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ABSTRACT

The use of entangled states in a prospective standoff imaging sensor has been explored.
Specifically, the question of whether enhanced performance (in terms of achievable
resolution, in particular) may be obtained through the use of entangled states in a ghost
imaging configuration has been investigated. The resiliency of such a system in the
presence of transmission impairments that necessarily accompany sensors in a tactica
environment, such as large optical loss, atmospheric turbulence and scattering has been
considered. The prospective imaging sensor based on quantum entangled states has been
compared with respect to a similar sensor based on classical states in terms of its
expected performance. Experiments concerned with the generation of ghost images with
nondegenerate pulsed sources of entangled photons as well as with tri-photons have been
carried out. Prospects for multiple photon absorption by coupled quantum wells have
also been studied.

It has been found that entangled states in general can maintain their entanglement in
the face of scattering and optical loss. Also, propagation of the individual photonsis also
governed by Maxwell’s equations, just as with classical light so that the energy
propagates at the wavelength of the individual photons. States configurations have been
found that offer enhanced resolution. States have also been found that suffer
impairments no more egregiously then classical light. However, no entangled states and
sensor configurations have been found that satisfy both of these crucia criteria
simultaneously. Quantum ghost imaging sensors have been found to give advantages in
principle in resolution and signal to noise ratio when compared to their classical analogs.
However, the conditions required to make use of these advantages will be very difficult
to realize in practice. We have formulated suggested structures for multiple photon
detectors based on coupled guantum wells as well as tri-photon sources based on
aperiodic gratings. Experimentally, we have made what we believe to be the first
measurements of correlation peaks as well as a ghost image utilizing a pulsed
nondegenerate source of entangled photons. We have also generated entangled tri-
photons (using hexagonally poled lithium tantalate) which will be required for the
realization of enhanced resolution in an imaging sensor.
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1 Summary

The QSP Program goals are shown in
tabular form in Table 1. The centra
guestion being addressed by the NGC
QSP team was whether entangled states
coud offer an enhancement in
performance in a standoff imaging sensor.
In particular, NGC examined ghost
imaging where photons scattered from a
target to a non-resolving detector can be
used in conjunction with a spatially
resolved image of the source to form an
image of the target. During the course of
our work, we examined several classes of
entangled states (GHZ states, W-states
and entangled beams) and different
configurations in terms of the numbers of
photons that are retained at the sensor as
opposed to being propagated to the target.

A summary of the findings with
respect to the first four elements of Table
1 and the various configurations cited
above is shown in Table 2. Essentialy, it
was found that elements 1 and 3 of Table
1 were generally satisfied for entangled
states of various types and configurations
cited above. With regard to elements 2
and 4, it was generally found that the
various configurations examined satisfied
either one or the other of these, but that no

Table 1 QSP Program Objectives
From the BAA.

The photon's interaction with the target
doesn't cause the non-classical state to be
entirely lost.

The quantum sensor can resolve two targets
at a closer spacing than is possible with a
classical sensor.

The energy that travels between the quantum
sensor and the target propagates at the
single photon wavelength

The quantum sensor suffers a loss of

sensitivity and resolution that is no worse

than the loss suffered by a classical sensor
under the following conditions:

» The transmission medium between the
sensor and the target absorbs or
diffusely scatters photons.

» The target is in a daylight environment.

» The target scatters incident photons non-
uniformly over 4r steradians

Make a specific calculation of the resolution
improvement achieved with a 3 dB loss in the
transmission medium and a resulting 26 dB

signal to noise ratio.

An experiment whose goal is to provide
additional validation of some results
demonstrated analytically under the Base
effort, particularly if the relevant theoretical
base is underdeveloped. The goal of a
proposed experiment may be to determine
results beyond the scope of the Base effort.

configuration satisfied both at the same time, which is, of course, the real metric of
success for a proposed sensor configuration under QSP. Thus, it cannot be said that,
during the course of thiswork, a combination of states and conditions was uncovered that
would satisfy the go/no-go milestones for the program. An important subtlety of a sensor
utilizing entangled states is that, since it is based on correlations between entangled
photons, uncorrelated photons (i.e. noise sources) will register detections with a
frequency that is far smaller than would be the case with a conventional system (that does
not rely on correlated detections.) This has two important implications. The first is that
background sources (such as daylight, for example) are less debilitating than what one
might expect conventionally. Secondly, large losses tend to increase the time required to
form an image but do not, in and of themselves, prevent the formation of the image.
However, in atactical imaging system, the time required to form an image can be very
important, depending on the details of the mission. Therefore, image acquisition time is
shown as a figure of merit in Table 2, even though it is not a program go/no-go
milestone, per se, and one can see that it goes “hand in hand” with the requirement on
sensitivity/resolution loss. Aswe worked through QSP, it quickly became clear



Table 2 States examined by NGC/UMBC for QSP Go/No-Go criteria.

Ghost Imaging Target Quantum Propagating Sensitivity/Resolution loss Image

Configurations interaction sensor wavelength not worse due to channel acquisition
does not resolution same as that of scattering/absorption, time not
destroy better than | single photon daylight Lambertian target worse than
quantum state | classical classical

Non-degenerate

bi-photons ‘/ X ‘/ ‘/ ‘/

N+1 -photon

GHz state > \/ X \/ \/ \/

retain N (N>2)

N+1-photon

GHZ state >

propagate N ‘/ \/ ‘/ X X

(N>2)

N+1-photon W-

state (N>2) ‘/ ‘/ ‘/ X X

N+1 entangled

beams (N>2) ‘/ \/ ‘/ X X

that resolution may not be readily separated from the signal to noise ratio, even though
the calculation of the Rayleigh limit (for example) for an aperture is independent of the
SNR. The Rayleigh limit represents the separation between the maximum of the point
spread function and its first zero. Depending on the SNR and signal processing
bandwidth available, one may either be able to do better or not quite as well as this limit.
Additionally, quantitative determination of the signal to noise ratio is dependent on
details of the system that are not well determined at this time, owing to the fact that the
behavior of key system elements, such as the source and detectors that are as yet
undeveloped, are unknown. Still, we were able to carry out analysis on the program that
permitted comparison between the proposed ghost imaging sensor and a baseline sensor
utilizing a pseudo-thermal source. Thiswork is summarized in the following paragraph.
Using classical decision theory NGC established a relationship between imaging
resolution with respect to the Rayleigh diffraction limit and SNR. It was found that, with
roughly the same SNR, the quantum system proposed could provide the required
resolution enhancement relative to a classical baseline. A variety of ways to describe
SNR for ghost imaging (using only two entangled beams) were utilized to compare the
guantum and classical cases to each other. The intensity interferometer approach seemed
to be the most appropriate description, especially given the fact that the baseline system
also consists of a ghost imaging sensor (a ghost imaging system based on pseudo-thermal
light was adopted in the latter stages of the program, replacing the originally
contemplated conventional targeting pod). Within this framework it was found that for
the same propagating wavelength and source output power that the quantum sensor could
provide significantly greater SNR due to greater visibility and much tighter beam
divergence than would be expected utilizing a pseudo-thermal source. There are several
caveats here, however. One involves the assumption of similar optical power for the
guantum and classical systems even though the former generally relies on a nonlinear
optical process with extraordinarily low conversion efficiency. Second, boosting the
optical power output of the source necessarily sacrifices visibility as aresult of accidental
coincidences in the detection circuit. Additionally, N-photon absorption detectors (at
least beyond N = 2) do not exist, and, when they do exist, the efficiency is expected to be
extremely small. Lastly, the calculations ignore the degradation, and possible
annihilation of the quantum entanglement upon the extremely high losses inherent to
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remote sensing with a diffuse target. Nevertheless, since source and detector
development were not areas of emphasis for QSP Phase |, we suspended detailed
treatment of these issues, and simply dealt with them as system trades in the early portion
of the analysis.

As a result of its experimental work, NGC was able to measure second order
correlation with its coincidence detection setup. This s, to our knowledge the first time
such correlation has been observed for a nondegenerate pulsed source. This has enabled
us to qualitatively see the expected drop in visibility with increased power of the
entangled beams, which highlights one of the critical trades that must be considered in
developing a concept of a quantum sensor. Using this source, we have observed (just
after the completion of the QSP program, on IR&D funding) what we believe to be the
first ghost image realized with a pulsed nondegenerate source of entangled photons. This
is reported here since, clearly, it was enabled by the work on the QSP program.
Incorporating a three-entangled beam source, such as the one conceived by NGC, would
allow us to demonstrate the resolution enhancement that has been the focus of the
theoretical work in this program. Experimental work to the end of demonstrating
imaging with tri-photons has also been carried out a8 UMBC. UMBC utilized
hexagonally poled LiTaOj; crystals to realize two sets of quasi-phase matching conditions
simultaneously. UMBC was able to show temporal correlations (i.e. a measurement of

G(S)(igl,'fgz)) for tri-photons from this source since the width of the correlation pulse

(~1ns) was significantly smaller than the width of the pump pulse or other subsystems
(~15ns), but did not succeed, as of the end of the QSP program, in forming a ghost image
with the tri-photons.

Based on our examination of the asymmetric coupled quantum well system, we believe
that two-photon absorption can be obtained with temporal characteristics required for
correlated photon measurements. The correlation times can be controlled through the
barrier strength of the region separating the core quantum well and the coupled quantum
well. A structure has been suggested for epitaxial growth and subsequent study asa
means to verify our calculations. The main unresolved question with regard to multi-
photon absorption in coupled quantum wells, however, revolves around the absorption
strength, which will need to be increased by orders of magnitude ultimately to make
detectors that are reasonably efficient. This can be addressed to some degree simply by
growing large superlattices. However, the realizable improvement hereislimited to
about afactor of 100, which, while helpful, does not completely solve the problem.



2 Introduction

This report describes work carried out under Contract Number FA8750-07-C-0201 on an
effort entitled “Quantum Enhanced Imaging by Entangled States,” a part of DARPA
STO's Quantum Sensors Program (QSP). Northrop Grumman’'s work on QSP was
carried out in collaboration with the University of Maryland at Baltimore County. Our
work on the program has centered around the use of entangled photons in a prospective
standoff sensor based on the phenomenon of ghost imaging.

Entanglement is a consequence of gquantum mechanics and was first discussed in the
seminal paper by Einstein, Podolsky and Rosen in 1935.> It is known that groups of
entangled photons act as a system and that (for example) when sets of two entangled
photons of a given wavelength pass through an aperture a diffraction pattern is produced
(with the appropriate detection of the system of entangled photons) as though the
wavelength was half that of the individual photons. In ghost imaging with entangled
states, entangled photons are scattered from an object onto a non-resolving “bucket”
detector while photons directly from the source are incident on aresolving detector (i.e. a
focal plane array [FPA] or scanning single element detector) and an image is formed via
correlation of the detection events on the resolving and non-resolving detectors. This
phenomenon has been demonstrated under laboratory conditions, but far less is known
about ghost imaging under tactically relevant conditions. The central questions taken up
in our work on the program, then, were fourfold. First, how can the improved resolution
inherent to entangled states cited above be merged with the concept of ghost imaging. As
a corollary, can we achieve the resolution inherent to short optical wavelengths while
reaping the propagation advantages of long optical wavelengths? Secondly, how is ghost
imaging affected by various transmission impairments encountered in standoff imaging
systems, such as loss and scattering. Thirdly, how does the signal to noise ratio required
to achieve agiven level of resolution in our quantum sensor compare to that which would
be required in a classical baseline system? Finally, can an experiment be fashioned to
demonstrate the feasibility of our quantum sensor concept?

In the following sections, we will see that the key question with respect to the
viability of the proposed sensor concept in a tactical environment came down to
developing a combination of entangled states and sensor configuration that allowed one
to realize enhanced resolution while showing robustness to the optical losses arising both
from path loss and Lambertian scattering by the target that characterize standoff sensor
systems. While we found configurations that accomplished each of these goas
individually, no combination we have uncovered to date satisfied these criteria
simultaneously, which is really the goa of the QSP program. We also found that, subject
to certain conditions that will be discussed below, one could expect an advantage in
terms of the signal to noise ratio required to achieve a given level of resolution for a
ghost imaging system utilizing entangled states as opposed to a similar sensor utilizing
(for example) a pseudo-thermal source of photons. Based on our examination of the
asymmetric coupled quantum well system, we believe that two-photon absorption can be
obtained with temporal characteristics required for correlated photon measurements. The
correlation times can be controlled through the barrier strength of the region separating
the core quantum well and the coupled quantum well. A structure has been suggested for
epitaxial growth and subsequent study as a means to verify our calculations. The main
unresolved question with regard to multi-photon absorption in coupled quantum wells,
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however, revolves around the absorption strength, which will need to be increased by
orders of magnitude ultimately to make detectors that are reasonably efficient. This can
be addressed to some degree ssimply by growing large superlattices. However, the
realizable improvement here is limited to about a factor of 100, which, while helpful,
does not completely solve the problem. We also formulated a design for a source of
beams of tri-photons based upon aperiodic gratings. Since source development was not
viewed as central to Phase | objectives, this was not fabricated, though it may be a
candidate for source work going forward. Asaresult of its experimental work, NGC was
able to measure second order correlation with its coincidence detection setup. Thisis, to
our knowledge, the first time such correlation has been observed for a nondegenerate
pulsed source. This observation has enabled us to qualitatively see the expected drop in
visibility with increased power of the entangled beams, which highlights one of the
critical trades that must be considered in developing a concept of a quantum sensor.
The experimental setup was then

configured for ghost imaging but, owing to
the much smaller collection efficiency in the
imaging setup (as opposed to the correlation
measurement setup) the measured signal to
noise ratio was not sufficient to re-produce
the characteristics of the target before the
end of the program. However, we will see
below that the work toward producing a
ghost image on the QSP setup was
continued after the end of the program (on
NGC IR&D funds). As a result, we were
able to obtain what we believe to be the first
ghost image obtained with a pulsed
nondegenerate source of entangled photons.
Clearly, even if the actual image was not
obtained during the course of the program,
the result was, in large measure enabled by
QSP and so is reported here. UMBC (per
correlation measurements) was able to
generate a source of tri-photons using
hexagonally poled lithium tantalate.
However, as of the program end date,
UMBC had not succeeded in forming a
ghost image with these tri-photons. The
generation of ghost images with high flux
beams of entangled photons as well as the
realization of ghost imaging with tri-photons
(and resultant expected enhanced resol ution)

Table 3 QSP Program Objectives
From the BAA.

The photon's interaction with the target
doesn't cause the non-classical state to be
entirely lost.

The quantum sensor can resolve two targets
at a closer spacing than is possible with a
classical sensor.

The energy that travels between the quantum
sensor and the target propagates at the
single photon wavelength

The quantum sensor suffers a loss of

sensitivity and resolution that is no worse

than the loss suffered by a classical sensor
under the following conditions:

» The transmission medium between the
sensor and the target absorbs or
diffusely scatters photons.

» The target is in a daylight environment.

» The target scatters incident photons non-
uniformly over 4x steradians

Make a specific calculation of the resolution
improvement achieved with a 3 dB loss in the
transmission medium and a resulting 26 dB

signal to noise ratio.

An experiment whose goal is to provide
additional validation of some results
demonstrated analytically under the Base
effort, particularly if the relevant theoretical
base is underdeveloped. The goal of a
proposed experiment may be to determine
results beyond the scope of the Base effort.

are both areas where further study is warranted.

This report is organized as follows. The program goals are shown, for reference, in
Table 3 and the first four elements were addressed based on fundamental theoretical
considerations by the team at UMBC. These results are discussed in Section VI. The
fifth element in Table 3 (along with systems related considerations) was addressed by
NGC's team a Rolling Meadows and these results are discussed in Section II.
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Experimental work was carried out a both NGC (in Rolling Meadows) and at UMBC.
Efforts from these endeavors are described in Sections |11 and VII, respectively. It is
perhaps worth noting that, in spite of the fact that the results are reported in separate
sections, there was considerable collaboration between the experimentalists at UMBC
and NGC. Though source and detector development were not primary thrusts on the
program, they were included in the statement of work and efforts aimed at addressing
source considerations and multiple photon detection in coupled semiconductor quantum
well systems are recounted in Sections IV and V, respectively. Finaly, we summarize
our resultsin Section V111 and provide suggestions for future study in Section I X.



3 System Analysis

This portion of the final report for the NGC-UMBC QSP team describes the resolution
and Signal to Noise Ratio (SNR) analyses that were conducted in order to assess the
potential advantage of a quantum ghost imaging sensor relative to a classical baseline
system. While UMBC showed that it is possible to obtain a resolution enhancement of a

factor of N relative to the Rayleigh diffraction limit using an |N ,1> source, we still need

to determine what the SNR requirement is for that resolution. We also need to see
whether the needed SNR for a quantum source is greater than that of a classical baseline.
Consequently, we can establish a relationship between resolution and SNR, and then
define SNR for ghost imaging sensors. We will see that a quantum sensor can provide
both resolution and SNR advantages with respect to a classical baseline, but the
calculated benefits involve assumptions that may not be entirely plausible in a redlistic
system.

3.1 Resolution

A goal of QSP is to develop a remote imaging sensor that offers a tenfold increase in
gpatial resolution for a given SNR compared to a classical system. We discuss below first
considerations of resolution for classical sensors, and then relate the possible resolution
to SNR for the classical and quantum cases. We first note that, as mentioned in the
proposal and discussed at the kickoff, NGC had identified a baseline product that could
potentially benefit from QSP technology. Our first investigations of SNR and resolution
therefore assumed parameters that were relevant to that baseline. In addition, the
guantum system has aways employed a ghost imaging scheme with different
wavelengths in the two arms of the interferometer. Because the spatial resolution
enhancement depends on momentum correlation among all of the photons in the quantum
state an important question is whether this correlation is preserved upon spectral
separation of the photons emanating from the source. NGC has found precedence in the
literature for preservation of quantum entanglement between signal and idler photons
following spectral separation of beams from nondegenerate parametric down converters.®
Essentially, because the spectral splitting does not constitute a measurement of transverse
position of the photons in either beam, it should not disturb the spatial entanglement in
the plane perpendicular to the propagation direction. Furthermore, under QSP, as we
show in a later section, we experimentally prove that the photons remain entangled by
detecting the correlation between photons that are spectrally separated after exiting a
nondegenerate spontaneous parametric down converter (SPDC).

3.1.1 Modulation Transfer Function
The NGC team first began a quantitative analysis of the resolution of the baseline
classical sensor, and then folded this into a modulation transfer function (MTF). This
quantity is used to characterize the resolution and performance of imaging systems, and
describes their ability to transfer contrast from object to image as a function of angular
gpatial frequency f. In fact, imaging system performance of an airborne sensor is often
cast directly in terms of MTF through the use of bar target patterns on the ground. The
MTF of the sensor can be degraded by aberrations, obscurations, or defocusing in the
optics or by turbulence in the channel between the object and imaging plane. There area
variety of specific MT functions associated with the components of the system. In each
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case, the quality of the component is measured by how much the actual MTF falls below
the ideal curve. Generadlly, it isonly at the lowest spatial frequencies, corresponding to
large features, at which maximum contrast can be achieved, which is consistent with the
MTF results shown below.

We considered two dominant effects: diffraction-limit and turbulence. The
diffraction-limited MTF for an aberration-free system with a perfectly circular apertureis
defined by?

H i (X) = %[arccos(x)— Xv1-x? ] (1)

where x is the normalized spatial frequency, x:fi and f; is the cutoff angular

frequency given by
D
f.=—, 2
== @

Table 4 K t where D is system aperture diameter and A is the
ofabaeselinee%ﬁ) ggr:qzt?l% wavelength. Table 4 shows the key parameters of the
diffraction limited MTE baseline system that have been used to determine the MTF.
_ From Equation (2), one then finds that that contrast falls to

Parameter Unit | Value | zero at an angular spatial frequency of f. = 95 cycles/mrad.
System inch | 6 In an actual experiment, a square-wave target is often used,

2?;;2:; S consisting of a pattern of alternating dark and light bars of
b equal width. The cutoff frequency then describes, for a

Focal length | mm | 1700 given aperture and wavelength, the maximum density of

Wavelength | pm | 1.57 | harshelow which imaging contrast is possible.
In addition to diffraction, the atmospheric induced MTF is defined by*

5/3
Table 5 Key parameters H atmosphere(f ): exp| —3.44* (i fj , (3)
for estimating turbulence r

induced MTF. The
multiple values correspond
to different levels of
turbulence, as exemplified
by the yellow and magenta
curves of Figure 1.

0

where r, is the transverse coherence length (also known
as the Fried, or seeing parameter — see the section
below on atmospheric considerations for a link model)
that depends on the range and C,°>. C,? varied

from10 ™ *m? 3 t0 10" m %3 asafunction of atitude

S Unit | values | a5 shown in a previous report. For easy comparison, we

c2 m2? 5"10_15 assumed that C,? is constant over the range where the

5x10 sensor would be used. Table 5 shows the key

gar‘ggte to kft gg parameters that were used in calculating the turbulence-
induced MTF.

Ig?{;‘éﬁfee em |29 Figure 1 shows both diffraction limited MTF (blue

length 7.4 curve) and  turbulence induced MTF  for

Cr?=5><10‘16m‘2/3 and C§=5><10‘15m‘2/3 (yellow



and magenta curves, respectively). The abscissa is angular spatial frequency, which
varies from 0 to 100 cycles/mrad. The ordinate is MTF, which runsfrom O to 1. In the
absence of atmosphere and with infinite aperture the MTF would equal 1 at all
frequencies. In this example, however, the contrast decreases with angular spatial
frequency due to the finite aperture in the diffraction-limited case, and due to the seeing
parameter for the case of turbulence.

Modulation Transfer Function vs Angular Spatial
Frequency

1.2

c 2 =5x10° m?®

1 ] \ / I_COhTrans =29¢cm
0.8

Modulation Transfer
Function

0.6
0.4 - Diffraction
) an = 55105 23 Limited
0.2 Leon ™ =7.4¢m
0 T T T
0 20 40 60 80 100

Angular Spatial Frequency (cycles/mrad)

Figure 1 Diffraction limited MTF (blue curve) and turbulence-induced MTF for
Cﬁ =5x10"%m?2 and Cﬁ =5x10"®m23 (yellow and magenta curves, respectively).
The range to target was 20 kft.

With respect to diffraction, the resolution is degraded more or less by this
phenomenon than by turbulence depending on the value of C,2. We expect, for the
diffraction-limited case, that the resolution is given by A& = A/ID = 10 wrad, whereas
for turbulence, with an infinitely large aperture, the resolution is governed by the seeing
parameter according to AGum = A/ro = 5.4 prad and 21 prad, respectively for ro = 29 and
7.4 cm. These estimates explain the degradation in contrast seen in Figure 1. The
performance of the sensor can therefore depend dramatically on atmospheric conditions
near the ground, which can vary with time of day.

3.1.2 Real Space Description of Resolution: Rayleigh Diffraction Limit
Although MTF versus spatial frequency is a standard measure of sensor performance at
range using bar targets, one can aso utilize a description of resolution in real space
relating to the Rayleigh diffraction limit. We therefore began conducting a resolution
analysis along the lines reported by BBN Technologies at the March 2008 Workshop. In
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this work, the resolution problem is posed in terms of statistics as described by Carl
Helstrom in 1964:° two targets are Helstrom-resolvable if the maximum a priori (MAP)
probability of error is below some small number.

A Monte Carlo smulation was coded for direct detection, with the expected
irradiance distribution subject to Poisson noise. A hard circular aperture was assumed,
and the separation between sources was normalized to the angular Rayleigh resolution.
The ssimulation results were consistent with those reported by BBN at the workshop in
Utah. Figure 2 shows the results for N = 10 photons incident on a detector of unity
guantum efficiency. The simulation is compared to the up]]oer bound predicted by
Bhattacharrya,® a lower bound estimate formulated by Shapiro,” as well as the quantum
limit of detection.?® We have also calculated the error probability as a function of the
SNR (equal to the mean photon number for Poisson statistics), and SNR versus target
separation.

O * Bhattacharyyé
[ 3 . . )
= Shapiro
- * Quantum Limit
= 1 Monte Carlo Simulation
- *
—
2 21
o .
~—
(@)}
o -3 i 03
-
.
'4 *
*
y < » ~ A
5 | | |
0 2 4 6
d/dgay

Figure 2 Error probability (Perror ) VErsus separation of two point sources relative to the
Rayleigh diffraction limit for N = 10 photons incident on a detector of unit quantum
efficiency.

The decision theory analysis was also used to calculate resolution versus SNR
assuming Poisson-distributed noise for a separation of two point sources of 0.1 to 3 times
the Rayleigh criterion. Figure 3 shows the results of a Monte Carlo simulation in which
we assumed an error probability of 102 based on the parameters of probability of
detection Pp = 0.9 and false alarm Pga = 10°® respectively, as outlined in the DARPA
metricsinthe BAA. Theresult isthat obtaining Rayleigh resolution requires about 13 dB
SNR.
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Resolution vs SNR
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Figure 3 Resolution versus SNR for probability of error, Perror, Of 1072,
L A dightly different
\ decision theory approach led to
0.8 a similar result. In this case,
\ the classical baseline system
g 0° was analyzed in terms of a
® 04 generalized likelihood ratio
test? with Gaussian noise
0.2 statistics and binary
. \X hypotheses H, and H;
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0 20 40 60 80 100 . .
either one or two point
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Figure 4 Minimum separation between point sources
corresponding to given SNR for a classical sensor.

sources, and a jinc® point
spread function. SNR was
calculated analytically as a
function of separation between
two point sources up to the

Rayleigh distance using the model of Shahram.’® Figure 4 predicts that in order to
achieve Rayleigh resolution, we need to have SNR = 11 dB per pixel. This s then the
level of SNR that the qguantum system would have to achieve in forming images with a
pixel sizethat is smaller by afactor of ten.

3.1.3 Resolution of Quantum versus Classical Ghost Imaging
We extend the above results to a quantum ghost imaging sensor by incorporating a point

spread function (PSF), derived™ for the |N ,1> state, into the Monte Carlo simulation of
resolution versus SNR. We assume that there are N photons propagating to the target and
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that in the sensor have wavelengths 4; and A, respectively. For two point sources on the
object plane symmetrically located about the origin at radius a/2, we have

2 2

N |
N |

PSF,mgles = = 150mMb il Py — +somb il P, +—5—
2 ﬂ”ZLZ deff ﬂ”ZLZ deff

: (4)

where p, is position on the image plane, L, is the distance from the imaging lens to the
array sensor, and der; is the effective distance between the lens and the object plane,

defined as 12
.y =d2+dl[%], (5)
2

where d; is the distance between the source and the object and d, is that between the
source and the imaging lens of focal length F. The relation to L, and F is given by the
Gaussian thin lens equation as

L, = . (6)

As discussed above, we set the error probability for distinguishing between one and two
point sources to Perr = 0.01. In the case of the new baseline sensor, A; = 4, and N =1, we
obtain the same result as for the original classical imager, leading to dmin/dray = 1 @ SNR
=13 dB. For the quantum case, Wen et al.** showed that the resolution is a function of
the relative values of d; and d,. For N =10, A4; = 1550 nm, A4,=800nm,F=5cm,D =25
cm, and d, = 10 cm, the best resolution requires values of d; > 10 m. Figure 5 shows the
results for d; = 100 m; greater distances do not increase resolution. We also see that the
resolution is not increased by afactor of ten for agiven SNR. This may be a consequence
of loosely defining the number of counts per pixel to be equal toC ;e = SNRxPSF . In

ideal photodetection of Poisson-distributed photons with average number (n) incident on

a single detector of quantum efficiency 7ue, SNR =744 (n). For real detectors, and in

particular, for the photons arriving at the bucket detector of the quantum ghost imager,
the SNR is more complicated (see the section below on SNR in coincidence counting) and
can be enhanced if the photons obey sub-Poisson statistics, or by signal averaging, or it
can be depressed as the number of background photons increases.  With respect to
coincidence counting, our definition of Cpix is strictly valid in the case of equal counts
on both detectors, a visbility V =1 , and multiplication by an additional factor
corresponding to the square root of the number of counting intervals.*® The main point of
Figure 5, however, is to schematically compare the resolution offered by the quantum
case to that of the baseline ghost imager for the same SNR.
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Resolution vs SNR
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Figure 5 Resolution versus SNR for different ranges of the baseline and quantum ghost
imagers.
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Figure 6 Unfolded version of setup for pseudo-thermal ghost imaging.

The calculation of the resolution for the pseudo-therma ghost imaging baseline
assumes the paths shown in the setup of Figure 6. The associated PSF is
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where s, = d, —dy and s; = dy, are the effective object and image distances, respectively,

according to the Gaussian thin lens equation for this system.** This equation is derived
from the terms in the second order correlation function proportional to the product of
Green's functions for the two different paths. Note that the lens here forms a secondary
image since the thermal source already produces a lensless image at d, = da. As noted
above, the lens is therefore necessary in remote sensing in order to allow for a much
longer distance in the path to the target. The yellow markers in Figure 5 show that for
sufficiently long range the resolution is the same as in the bi-photon system. This is
because the resolution of the secondary ghost image is governed by the aperture of the
lens, which is assumed to have the same diameter as that in the quantum setup.

Overall, the above resolution analysisindicates that for the same SNR (11-13 dB) the
guantum system increases spatial resolution with respect to the Rayleigh diffraction limit
by afactor close to the number of entangled photons interacting with the target.

In the above analysis, we have used classical decision theory analysis. In a strictly
guantum hypothesis test we would need to form the density operators for the quantum
state. In the case of pure states for the two hypotheses, Helstrom has shown that the
probability of error is given by™

where |y,) and |y, ) are the states corresponding to Ho and H respectively. Specifically,

for the entangled N+1 state that we consider for our quantum imaging system, the two
hypothesis states would differ by electric field operators acting on the crystal output; in
one case the Green’ s function for the field would contain an aperture function for asingle
point source, whereas the other’s aperture function contains two delta functions for the
two separated sources. In order to use the above expression, however, the states must be
properly normalized, which has not yet been done. Additionally, we do not have an
analytically expression for the case of N > 2 entangled beams (versus photons).

3.2 SNR Analysis
3.2.1 General Quantum versus Classical Considerations

We first discovered a direct comparison between SNR for quantum-correlated versus
classical photonsin the work by Jackson et al.*® The entangled photons were considered
to be captured by a single detector with multi-photon efficiency 7n.pn, Similar to what
NGC had envisioned for its QSP sensor, and the dominant noise term was assumed to be
shot noise due to photons entering the detector. According to this analysis the ratio of the
SNRs (R) in the correlated and classical casesis given by
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SNRcorreIated - \/Pt'nSPDC nn—ph (na’o)

, 9
SNR P a ©

classical

where P, and P/ are the transmitted laser power to the target in the classical case, and

the nonlinear optical crystal pump power in the case of the quantum sensor, nmyio IS the
efficiency of the nonlinear optical (NLO) process for generating entangled photons, and
naet 1S the classical detector efficiency. One aso assumes here that shot noise is
dominated by signal as opposed to background photons. If one further assumes that |aser
and pump powers are equal to each other, then R < 1 due to the inefficiency of the NLO
process. However, if the pump power is much greater than that of the laser one can have
R > 1 as long one does not enter into a “stimulated emission” regime for which the
downconverted output is diluted by uncorrelated photons.

arge

Classical [Imager

FPA

Figure 7 System architectures:. classical versus quantum imaging.

When the background photons (i.e., solar) dominate the shot noise R was shown to be
governed by

SNR correlated  __ PIUSPDC M n—pn (n a)O)

SNR classical \/Ptﬂda M1 ph (na)O) |

where 71n 1S the single-photon detection efficiency of the multi-photon detector, n = 2,
and the pump power is no longer required to exceed the laser power if the detector is
designed such that 7n.pn>>m10n. Of course, for n > 2, we will have to consider the

(10)
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possibilities of many other multi-photon (i.e., 3, 4, ..., n-1) absorption processes that
compete with the n-photon absorption of interest.

The above treatment is not adequate for describing the case of ghost imaging because
one must consider joint detection between a bucket detector after the free space idler
path, and an array detector in the local signa beam. The classical versus quantum
imaging scenarios are depicted in Figure 7. One of the main benefits of ghost imaging is
the ability to capture the idler photons with a point detector rather than array, giving a
gain in signa proportional to the number of pixels. However, the system setup is more
complicated because of the need to perform joint detection. These system trades are

summarized in Table 6.

Table 6 Qualitative comparison of quantum versus classical systems.

Classical Imager | Quantum Imager Comments
Source Laser Laser with SPDC Efficiency to create entangled
photons is critical for quantum
imager
Atmospheri | Two Ways (round | One Way (from Under severe turbulence and
c Effect trip) system to target) attenuation, quantum imager is
better
Optics System aperture Diffraction limit can | Implementation will require more
limits resolution be overcome by work on source and configuration
(diffraction limit per | multi-wavelengths
given wavelength) | (or multi-photons)
Detector Array detector for Bucket detector for | Quantum imager has a gain by the
imaging target imaging target. number of pixels over classical
imager.

3.2.2 SNR and CAR of Classical and Quantum Systems
In our first system analysis of ghost imaging we described the detection process by a
guantity — the coincidence to accidental ratio (CAR) - unique to joint detection. We then
analyzed the classical baseline (which at that time was not a ghost imaging sensor),
according to the SNR per pixel as a function of range to the target as shown in Figure 8.
The power SNR is then defined as

(GNsig)2

SNR = ,
(Noise)*

(11)

where G is a gain factor for the imaging sensor, Nsig is the number of signal
photoel ectrons, and noise is the total shot noise due to the number of dark electrons Ngark,
solar photoel ectrons Ngolar, and Nsig. This noise was calculated as

Noise = \/F %G ?(Nyag + Nogor + Ny ) (12)

solar

where F is the noise factor. We see in Figure 8 that the slope changes, as expected, from
a1/R* to a1/R* dependence as the optical beam size exceeds the area of the target.
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Figure 8 Comparison of CAR of quantum sensor to SNR of classical one.

For the quantum case we assumed the existence of an N+1-entangled photon source
employed in a ghost imaging geometry. The source emits photons in short pulses at a
repetition frequency v limited by the dead times of the sensors. We denote as the
“idler” the N photons emitted in a spectral range favorable for atmospheric transmission
for propagation to the target and back. We choose the 1.55 xm wavelength because of
the maturity of InGaAs avalanche photodiodes (APDs) in Geiger mode operation, and
advanced components at that wavelength developed for telecommunications. Ultimately,
however, we may choose a photon wavelength in the long-wave infrared for mitigating
losses due to atmospheric turbulence, and requiring Mercury Cadmium Telluride (MCT)
detection.

The “signal” photon (entangled with the N idler photons cited above) is retained for
coincidence detection with the idler photons when they return from the target. Initialy,
we considered the case of N = 2 (i.e., one signal, one idler) to simplify the analysis. An
SPDC source pumped at 532 nm would generate a 0.81 zm wavelength signal photon
correlated with the above idler. This wavelength lends itself to the lower noise, higher
speed Si and emerging array detection.

In recent studies of quantum correlated photons, it was shown that the ratio of
coincidence counts per integration interval R, t0 accidental counts R peaks at
detected entangled pair levels per pulse of < 102" We therefore considered that the flux
incident on the idler detector or on each pixel of the signal detector array per gate interval
was kept at or well below single-photon level to preclude saturation, and for achieving
optimal SNR. We noted that one of the key objectives of the UMBC work on QSP was to
investigate means by which the counting rates could be raised while maintaining
workable levels of SNR using methodologies such as entangled beams and current
correlation. Next, one could imagine a scheme in which the flux per array pixel is scaled
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as a function of range and target cross-section either by adjusting the source flux or by
attenuation of the photons at the detector. As a practical matter, one must be careful,
however, because the source output cannot be arbitrarily increased without running into a
“stimulated emission” regime in which the degree of entanglement is diluted. This
occurs in SPDC sources, for instance when the single-pass gain crosses over from a low
to a high gain region, where it goes from being quadratic in field magnitude (linear in
pump power) to exponential.’®  Still, for the purposes of our analysis, we sought to
develop some required levels of output flux from a prospective source, which would
serve as a development challenge for a subsequent phase of the QSP program.

For the quantum ghost imager, we calculated the ratio CAR.™® Thisis not exactly the
same quantity as SNR because it isaratio of signal to background, rather than of signal to
shot noise fluctuations, but we used it as a starting point for comparison with the classical
system. We surmised that a fraction f; of the photons emitted from the source were
guantum-correlated with each other. Assuming that the correlated pair production rate is
Hpair, the roundtrip loss for the idler photons is 7;.way, the optical loss for the signal is
Mocal @Nd the quantum efficiencies of the signal and idler photodetectors are s and 7;,
respectively, we have, for the number of coincidence counts,

Ncoinc = fc:upairUZ—waynlocal nsﬂi . (13)

The total number of signal counts x4 is a sum of contributions from twin photons,
uncorrelated (background) photons 4°, and dark electrons that are detected at a rate dk.
If the coincidence peak has atemporal width of T., determined by detector jitter, then we
find

/us = (;upair + :ul:)nlocal 775 + dsTc ' (14)
The number of idler counts has an additional term due to the number oo Of SOlar

photons hitting the target. Considering that these have a one-way 10ss of 771.way, and that
the idler detector dark count rate is d;, the total number of idler countsis

Hi = ((ﬂ pair T ﬂklm )’72—way + Hsolar 11-way )'7i +diTe . (15)
The coincidence peak is superimposed on a background of counts due to al of the above
sources, including members of twin photon pairs that arrive at the same time as members

of other pairs to which they are not correlated. We referred to this background as
accidental counts, given by

Nacc = /us:ui ) (16)
We defined the power ratio of coincidence to accidental counts as

N 2
CAR1= F . (17)

acc
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However, since accidental counts are measured within the coincidence time, it is more
appropriate to add them to the coincidence counts before normalizing to the background,
leading to

(Ncoinc + Nacc)2

(Newo f

We used this quantity to compare with the SNR of the classical system, given that the
following parameters in the quantum case were the same as in the classical one, in
accordance with the QSP guidelines: wavelength of photons propagating to the target and
back, average optical power out of the sensor, aperture size, geometric losses,
background and target cross-sections. Both sensors were assumed to emit light in the
form of a train of pulses. For photon coincidence counting statistics, however, it is
advantageous to have a high pulse repetition rate (i.e., > 100 kHz), whereas as for the
classical system it is better to flood the target with a very high energy pulse, concomitant
with lower repetition rate lasers.

Given an array format of the classical system we assumed that the quantum sensor
array had a resolution cell smaller by a factor of ten to conform to QSP's goals. An
advantage of ghost imaging, however, is that the array can be placed in the signal path,
for which optical loss is very low, and the weak idler return goes into a bucket detector.
The main challenge is therefore to make the source flux high enough for adequate return
of the idler from the target, while reducing the signal flux to single photon level required
for the coincidence measurement. The signal flux can be reduced by using a telescope to
magnify the beam on the array, and/or a series of beam splitters to direct the light to
multiple arrays that would be engaged in joint coincidence. We assume for this anaysis
that only one array would suffice.

CAR2= (18)

25

CAR (dB)
[ =
o (6] ]

fcorr

Figure 9 CAR2 versus fraction of correlated photons.
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Table 7 Values of relevant parameters for Using the parameters listed in Table
SNR/CAR calculations of Figure 9. 7 we calculated SNR and CAR in Figure

8, where we see that the range R at

Parameter Value . -

Laser Pulse Width 5 nus which the classical sensor has SNR = 13
Pulse Repetition Rate 20 kHz dB (the level required to achieve
Beam Divergence 0.2 mrad Rayleigh resolution, as shown above) is
Signal Wavelength 0.81 um approximately 1 km. We therefore
Idler Wavelength 1.55 um adjusted the pulse energy of the
Receiver Optics Transmission 0.5 quantum sensor such that, at the same
=l el Dielieeiel Siie Cre) U R, we have single photon-level counts
2:3:2: E?rl:islthgngfgliftlspcy Zé)dsps at both detectors and a CAR of 13 dB.
Signal Array Dark Count Rate 1 kHz B.Oth CARL an(.j CAR2 as plotted in
Idler Detector Efficiency 0.1 Figure 8, are independent of R for
Idler Coupling Efficiency 0.1 distances such that the beam size is
Idler Detector Time Jitter 800 ps smaller than the target. This occurs
Idler Detector dark Count Rate 200 kHz because in this regime, the coincidence
\%?&Tﬁ'de”ce Detection Gate 10 ns and accidental counts have the same

i

g 00 deardercs Seyond e e
Target Reflectivity 0.3 P .

Aperture Diameter 10 cm dependence,  causng the true
Solar Spectral Flux 267 W/m>um | coincidence contribution to the counts
Atmospheric Attenuation 2 dB/km to become small compared to the

background.  Consequently, CAR1
becomes a small number, and CAR2 approaches 1, but exceeds the classical SNR for al R
> 1 km.

For a fixed range (R = 2 km) Figure 9 shows how CAR2 increases with degree of

guantum correlation, and
Figure 10 shows its

o5 dependence on the source
rate of photons per second.
20 Obvioudly, this rate is

extraordinarily high, and

15 would probably be difficult

CAR (dB)

. 10 to achieve without
/ significantly reducing

5 4 visibility. Furthermore,
such fluxes may not allow

0 ‘ ‘ the use of single photon
0.0E+00 2.5E+20 5.0E+20 7.5E+20 L0E+21 | | counting. Instead, we may
Rsource need to view the output of

the quantum sensor in this

Figure 10 CAR2 versus source flux (photons per second).

regime in terms of entangled beams, rather than entangled pairs. For detection, current-
current correlation techniques may need to be employed. These have been investigated
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by UMBC for several years in the case of pseudo-thermal photons,® but have only
recently been explored with entangled photon sources.

3.2.3 Atmospheric Effects
One of the main goals of the experimental work was to eventually determine the effect of
scintillation on quantum entanglement. Consequently, NGC modeled beam propagation
for aremote sensing scenario commensurate with the initial baseline.

In order to include in
: r SNR m I

c,2 vs| Altitude ggth S classci)gg OS:%
1.E-14 guantum mechanical,
associated with
atmospheric  turbulence,
Slant |Angle 8=75° NGC modeled the
propagation of beams from
1.E-16 the airborne baseline
\/ sensor to a target on the

ground and back. To
begin with, we study the
Altitude (m) the _ spatial prpfile and

spatial frequencies of the

1.E-13

1.E-15

Cn2 (m—2/3)

1.E-17 T T

_ ) _ beam as modeled with
Figure 11 C; vs. dtitude. physical optics code. To

account for atmospheric
effects we considered the sensor to be located at an altitude of 20 kft with a range of 24
km and moving at 200 m/s. Using the Hufnagel-Valley model for the refractive index

structure constant,Cﬁ21 assuming a wind speed at the ground of 20 mph, and a
logarithmic dependence of wind speed with atitude h,?*> we determined the height
dependence of Cr? to be as shown in Figure 11. The Fried parameter was then calculated

for sections of the propagation path both for the downlink and uplink, varying between
about 10 and 300 cm. Gaussian beam propagation was modeled using GLAD software in
which we iteratively performed diffractive propagation with phase aberration steps
associated with each section of the path. Figure 12 (a) — (c) shows spatial profiles of the
beam at the starting point, at the ground (target), and back to the sensor, where it is
diffracted by the 15 cm aperture. Scintillation with these seeing parameters is clearly
sufficient to break apart the beam into numerous spikes. However, the effect on the
gpatial frequency distribution does not appear to be as drastic. As seen in the FFTs of
these irradiance distributions (Figure 12(d) — (e)) theinitial peak is greatly sharpened due
to the broadening of the beam (toward a plane wave) with distance, but higher spatial
frequencies are introduced due to aperture diffraction (rings) and turbulence (lobes). We
conjectured that this spatial frequency redistribution disturbed the anti-correlation of
transverse wave vectors between the free space propagating idler photon beam and the
local signal beam, which does not propagate in atmosphere. In fact, UMBC has shown
that scattering of the returning idler has no effect on this anti-correlation as long as the
photon is picked up by the bucket detector. However, this may not true of the outgoing
beam.
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Figure 12 (a) — (c) Spatia profiles of
beam along atmospheric path. (d)-(e) FFTs
of starting and final distributions of beam.
Abscissaisin cycles per meter.

An additional loss factor of potential importance in our quantum enhanced system is
also associated with the atmosphere and is due to fluctuations in idler photon arrival
times. A loss is incurred if the fluctuations cause the photons to arrive outside of the
entangled pair coincidence window. According to Young et a.,? the time-of-arrival
variance for a Gaussian pulse of initia half-width Ty propagating a distance z in a
turbulent medium with outer-scale size turbulence L, and index of refraction structure
constant C,? is given by
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(19)

where & =0.3908-C,%z Lo"®/c?, ¢ is the speed of light, and Ly is the outer-scale parameter.
If we consider Ty to be theinitial coincidence width, and take conservative values of L, =
10 m, and C.2 = 10 m™??® we estimate the square-root of the variance, as shown in
Figure 13. The amount of

6.E-12 broadening is seen to be
negligible for widths greater

R than 1 to 10 ps. In reality,

A1 / the measured coincidence

s - peak  width will  be

o 3.E-12 broadened primarily by the
much greater 100 to 1000 ps

2.E-12 overall jitter of the detectors.
Experimentally, fine

1E12 ‘ adjustments to the idler

1.E-14 1.E-13 1.E-12 LEAL| | ooy gate duration are

Initial Coincidence Width (s) used for coincidence count

] . . . . . optimization. The gate
Figure 13 Variancein arrival time as a function of width is much wider than
initial coincidence width after propagation through40km | the  coincidence  width,
in atmosphere. especialy for optical pulses

>1ns.

3.2.4 Ghost Imaging SNR Model

We eventually developed a signal-to-noise ratio (SNR) model for quantum imagers that
superseded our initial description of joint detection in terms of CAR. The model
incorporated the effect of photon states peculiar to the quantum imager and the effects of
solar background that are significant for systems operating outdoors. The model also
took into account the effect of joint detection that is unique to quantum imagers. This
work is summarized in a paper presented at the SPIE Conference entitled “Quantum
Communications and Quantum Imaging VI” (San Diego, Aug. 10-14, 2008).*

Briefly, the model assumed an avalanche photodiode (APD) running in Geiger mode
for both classical and quantum imagers. The unified model defines noise equivalent count
(NEC) by

NEC — 2\/l77q (F _1)Msig J+ Msig +Zjoint(M back + Mdark) ) (20)

T

The first term in the sguare root comes from the beam splitter relation for thotons
incident on an inefficient photodetector in the quantum model of direct detection.”® Here,
14 1S quantum efficiency, F is the Fano factor, T the total counting period, and yjoint =
TwMiecar IS a scale factor for joint detection, with Ty being the coincidence counting
window duration, and Mecar the count rate per pixel in the local detector. Msig, Mpack, and
Mgyark are the count rates for return signal from target, background, and dark count,
respectively. F describes the degree of entanglement of the quantum state: 1n a perfectly
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entangled number state F = O, whereas F = 1 for classical photons.  jeint = 1 for the
classical imager and can be reduced far below 1 for the quantum sensor by adjusting the
photon count rate in the local path and temporal window. SNR isthen given by

Msi

Using this expression we performed a trade study of parameters for a quantum ghost
imager. The model assumed an entangled photon source that transmits N degenerate
photons at 1.55 xm to a Lambertian target 1 km away while keeping a photon of different
wavelength for local coincidence detection. This configuration was based on modeling
by UMBC that showed N-fold increase in spatial resolution for an N+1-photon state if N
photons were sent to the object to be imaged and one was held locally. The photons
returned from the target were assumed to be detected simultaneoudly (i.e., by an N-
photon absorber). Because such a source and sensor do not exist, and we were not doing
development of these components in this phase, we were limited to treating their
efficiencies as variables.

For the assumed value of C,? of the atmosphere we required 10 dB of fade margin for
the SNR. This was based on a time series of the irradiance | generated by creating a
normal random distribution of the log-amplitude parameter y, and then calculating (with
low-pass filtering for atmospheric time constant) the cumulative probability distribution
of 1, such that 99% of the time, | is greater than 5% of the mean (normalized to 1). This
percentage is then translated to a required margin for fading of 10 dB. Consequently, the
overall SNR needed for the sensor is this margin plus the level required to achieve the
Rayleigh diffraction limit, i.e., 10dB + 11 dB =21 dB.

Before proceeding with the quantum case, we modeled a classical system in which
the source output power was adjusted to a level commensurate with SNR = 21 dB. The
same average power was then assumed for the quantum system, as well as the same
aperture size. However, the quantum sensor beam waist was maximized, while avoiding
clipping by the aperture, in order to minimize divergence, and therefore the size of the
illuminated spot on the object. This was necessary to attempt to satisfy the requirement
of UMBC’s model that the N photons hit the same point on the target and return together
to the sensor.® We also assumed that the source output was an entangled beam that
consisted of a large number of sets of N-photons, in each pulse, and, that perhaps
multiple pulses would have to be transmitted to increase the probability that one of the
sets of photons would return to the source unscathed; otherwise the entanglement is
completely lost.

Figure 14 shows the dependence of SNR versus detector efficiency for F = 0.9
assuming unity detector quantum efficiency, and SNR versus F for both source and
detector efficiencies equal to 1. In these calculations we assumed that the output current
of the N-photon was linear in incident Photon flux, in accordance with theory of multi-
photon absorption of entangled states.>” This dependence holds if the entangled flux is
very low, which islikely in the case of areturn from aremote diffuse object.

At the March ' 08 QSP Workshop there was a question regarding the relevance in the
beam splitter relation of the Fano factor F, which was shown to be only slightly less than
1 by Rarity et a. in the case of post-selection following an SPDC.?2 For the GHZ state
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we have been considering, F = 0 by definition since the state has zero variance in photon
number as long as the quantum state remains intact. For W states the photon number
may change while still retaining entanglement among the remaining photons, so O<F<1.
Entangled beams, on the other hand are generated at high gain with intense pump
excitation. Because of a concomitant increased probability of accidental coincidences
this tends to degrade visibility,” with an expected corresponding reduction in F. Asa
result of all of these considerations we retain this factor in our modeling since we can
always set it to 1 in the limit of classical photons.

55 65
50 4

L 60

55

50

w
(4]
SNR (dB)

25 45

40

\ \
0 0.2 0.4 0.6 0.8 1
Ndet Fano Factor, F

Figure 14 SNR versus detector efficiency for F = 0.9 and unity bucket detector
efficiency (left), and SNR versus F for unity source and detector efficiencies (right).

While the actual values produced from this analysis are not yet meaningful, the
results point out the issues that must be addressed in developing a quantum sensor for a
real system. One is the trade just discussed involving high photon flux versus visibility
loss. Another involves the requirement that the N photons travel in a tight beam together
throughout the round trip. Even if it were possible, this means that the image acquisition
time is substantially increased over the classical case due to the need to now scan across
the target.

3.2.5 Ghost Imaging SNR: Intensity Interferometer Approach

Late in the program, pursuant to DARPA’s suggestion, we decided that the baseline
system should also be a ghost imager for the most direct comparison between quantum
and classical sensors. From an historical standpoint, ghost imaging is rooted in the
famous intensity correlation experiments of Hanbury-Brown and Twiss, which were used
to measure the angular diameters of stars.® It therefore makes sense to describe SNR of
the ghost imaging systems under consideration in terms of intensity interferometry.®
Essentially, the signal is determined by the correlation between fluctuations in the
detected photocurrents. The noise has contributions from shot noise (Nss), wave noise
(Nii) due to fluctuations in the intensity of light incident on the photodetectors, and a
cross-term (Ng) associated with correlation between wave and shot noise. In stellar
interferometry, shot noise is the dominant contribution.®  However, for pseudo-thermal
light the wave noise term can be the greatest source of photocurrent fluctuations. We
therefore retain all of these noise terms for comparison.

3.2.5.1 Photocurrent correlation
As a first step we assume detection Earameters similar to those of recent ghost
imaging current correlation measurements.® In order to determine the fraction of photons
hitting the target we need to know the divergence of the beams in the object path. The
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pseudo-thermal source generates light emitting in a hemisphere, but a portion of it can be
collimated with alens. We consider an initial source sizedo, =1 mm, D =10 cm lenswith
f = 20 cm foca length for both the baseline and entangled photon sources. For the
entangled case, the nonlinear optical crystal bandwidth is given by 4k,L = 7, where 4k, is
the deviation from perfect phase matching (z = beam propagation direction), and L is the
crystal length. Using momentum conservation, the small angle approximation, and
Snell’slaw for the beams exiting the crystal, the divergence of the target (idler) beam can
be calculated for bi-photons from

6= ZF% (22
L kk,

where kp, ks, and k; are the wave vectors of pump, signal, and idler, respectively. For
pump, signal, and idler wavelengths of 532, 810, and 1550 nm, respectively, this gives,
for an L = 5 cm long PPLN crystal, a divergence & = 13 mrad before the collimating
lens. Assuming average CW output power of 100 W, 1550 nm wavelength, a 25 m? area
diffuse target of reflectivity 0.3, but ignoring light reflected from clutter, we calculate the
expected rate of photons captured by the sensor aperture as a function of range for both
baseline and quantum sources, and compare to the rate of solar photons scattered off the
target into the sensor, using an irradiance on Earth of 267 W/um-m?* and to the dark
current, calculated from the noise equivalent power of the photodiode of 1.5 pW/Hz?
and an electronic bandwidth of 100 kHz. Figure 15 shows that the solar photons yield a
negligible contribution compared to the dark current, and that the photocurrents in the
baseline and entangled photon systems fall below the dark currents at 1 km and 10 km,
respectively. One also sees that the baseline signal begins to decrease as R* (due to laser
gpot size exceeding target area) at around 100 m, whereas this does not happen until

1.E+20 - ‘
- A Dark

— 1.E+16 u . Solar
! | | m Pseudothermal
\(0/ L — Entangled
8 1.E+12 u
I | |
= A A A A A . A A A A H A A AL A
T 1.E+08 = |
S |
o [ | ‘
O 1E+04 L ‘

1.E+00 ‘ o

1.E-01 1.E+01 1.E+03 1.E+05 1.E+07
Range (m)

Figure 15 Comparison of rate of photons incident on detector for baseline and entangled
photon sources against that due to solar photons and dark counts.
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ranges greater than 10 km for the entangled photon case. This single detection
comparison is somewhat misleading, however, because what ultimately matters is the
correlation between currents in two detectors, and this is what is calculated in the SNR
below.

We calculate the SNR versus range using the formalism derived by Gamo,® for which

SNR = S (23)

INZ+NZENZ

where S =(Aly(t)Al,(t)) is the correlation between fluctuations in the photocurrents in

the two detectors, and the explicit expressions for the noise terms are given in the
referenced paper. Here we ignore the solar and dark current contributions, and we
assume that the locally retained photons provide a photocurrent that is maintained at a
level equal to one tenth of the detector’s saturation level. In the case of an entangled
source, the wavelength of these photonsis 810 nm. Figure 16

shows the SNR for the two sensors versus range. The SNR is constant for ranges up to 1
km for the baseline and up to greater than 100 km for entangled photons. This is due to
the dominance in this range of intensity noise, which has the same dependence (i.e. «
I11,) on detector photocurrents as S, leading to a range-independent SNR. A similar
saturation of SNR has also been recently calculated for photocurrent correlation for both
classical and non-classical sources in the limit of high brightness (i.e., short range in our
case).® For longer range the correlation of shot noise with wave noise (beating term)

dominates, leading to a reduction in SNR due to a different proportionality (oc '2\/H and
oc |1\/E ) with the photocurrents.
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Figure 16 SNR versusrange for baseline and quantum entangled photon sources.
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The difference between the SNR for the two sources for short range is due to a higher
visibility (100%) assumed for the entangled photon versus pseudo-thermal (33%) source
(ideal cases).>” Of course, the actual visibility of an entangled photon source produci n%
multiple watts optical power may actually be much smaller than the baseline case?
which may nullify any advantage afforded by the more collimated beam. In this situation
the more sensitive single photon detection would enable weaker source intensities to be
used. It is more likely that shot noise will dominate over shorter ranges. The extent to
which shot or wave noise dominates is determined by a degeneracy parameter
representing the number of degrees of freedom M (both temporal and spatial) of the
intensity incident on the photodetectors within the measurement interval. The role of M
in coincidence counting will be discussed below.

3.2.5.2 Coincidence Counting
Above we considered the case of very powerful beams emanating from the source,
enabling detection of photocurrent from the photons returning from the diffuse target.
Photocurrent detection is the standard mode of correlation measurement for pseudo-
thermal ghost imaging. Here we assume lower light intensities, allowing the use single
photon detection, which is the usual method employed in ghost imaging with entangled
photons.
For coincidence counting over N intervals, the SNR is expressed as™

—— 2
SNR = \/N_c\/ N'\;IN2|IU12| ’ (24)

where N; and N, are the counts in the two detectors, and 14, is the complex coherence
function. The latter is equal to the visibility when N; = N, as is typical in bench top
entangled photon ghost imaging experiments. We assume as above ideal cases for which
L2 =1 and 1/3 for the entangled and pseudo-thermal sources, respectively. We note that
M = MM associated with the number of spatial (Ms) and temporal (M;) modes within the
detection aperture and integration time T, respectively.

To estimate the number of temporal modes we take the spectral bandwidth of the
SPDC output to be 10 nm,* which corresponds to 7. = 800 fs coherence time for the A =
1.55 um wavelength photons. Given a detector integration time T greater than the
coherence time z,, we have M; ~ T/z.. The time resolution is dominated by the jitter in
the InGaAs detector, which is on the order of T =1 ns. Consequently, M; = 1250 modes.
For a pseudo-thermal source the coherence time can be many orders of magnitude longer.
In Scarcelli’s work,* for example, 7 = 1 us, much greater than the APD rise time so that
Mt =1.

The value of M depends on the size and shape of the receiving aperture and optical
beam, as well as roughness of the target.** In the case of transmitting and receiving optics
that share the same circular aperture, and a beam that is smaller than a diffuse target, M,
is exactly equal to 3.77. For a beam that is only partially intercepted by the target, M
varies according to
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Where £ = DiensDspo/ AR.  In this equation it is assumed that the illumination spot Dgye: ON
the target is a fixed size, independent of range, which can be accomplished through an

adjustable telescope in the transmitter. In general, Ms ~ Age/ Ac When the active area of
the photodetector Aget encompasses a large number of coherence cells each of area A..
For an incoherent source that is uniformly bright across its surface we have®
X,ZRZ Dspot ? 42 . . . .
A = , where A, =7 > | For our ghost imaging configuration the
pot
number of coherence cells captured is determined by the receiver aperture, which then
directs al of the received photons onto the bucket detector, so that for Ajens >> Ac, which

2
is the case for very short range (8 >> 1), we have Mg , , = A::S = (%) :
Figure 17 shows, assuming 4; = 1.55 xm, 10 cm aperture, and target
of 5 m linear dimension, how Ms varies with g, for long range, where f becomes very
small, My approaches 1. For very short range (8 > 10), M, approaches Age/Ac. In
general, we can then write (denoted as M3 in Figure 17)

M _1+(”’3 j . For our calculations, however, we assume that we have a fixed

telescope so that the beam size is given by diffraction spreading. Consequently, the
range dependence of the coherence area cancels out, and Ms depends solely on whether
the beam is smaller or larger than the target cross-section. Thus, for fixed beam
divergence - no zoom optics to keep the spot size constant on the target — M; is constant

until the range is great

enough so that the beam

g 10000 grows larger than the target

o —M3 cross-section. This occurs at

g 1000 L Meire a distance for which
g = 2 / .

§§ 100 Rthreshold = A_H % is the

s 10 range at which the beam of

é full width divergence 46 of

2 1 ‘ ‘ the outgoing beam begins to

001 01 1 10 100 exceed the effective radius of

B the target. Beyond this

distance we take the spot

size to be equa to the
effectivediameter of the
target,

Figure 17 Number of spatial coherence cells versus
ratio of spot diameter to diffraction-limited resolution of
receiver optics. Mqirc isgiven by Eq. (25), whereas M3 is
an approximation, as discussed in the text.
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depends on the
relative sizes of the transmitting and receiving apertures. For the baseline, these two are
equal to each other, whereas for the entangled case, the transmitted beam is much smaller
than the receiver lens. Note that because of the huge divergence of the pseudo-thermal
beam, Rinreshoid 1S quite small (= 90 m), whereas this figure of merit is over 40 km of
propagation distance for the significantly tighter entangled beam size to exceed the
effective target diameter. However, for greater range the spot size is the same for both
cases giving equal values of coherence area and therefore M.

The theory of intensity interferometry was developed primarily for measurements of
the angular diameters of stars, and in such cases the values of M in the two arms of the
interferometer should be very similar, if not identical to each other. In ghost imaging,
however, the number of spatial coherence cells can be vastly different for the two
detectors in the coincidence setup.

A rough measure of the transverse coherence cell area associated with the bi-photon
can be estimated from the phase space cell size based on the uncertainty principle.
Following Gatti et a.,*® given the transverse momentum 4p, of the idler photon at the
output plane of an SPDC crystal of length L, the uncertainty in position of the signal

photonis
= /_;“ﬂ; , (26)

for arefractive index n;, so that the coherence area A = (4;L)/2n;. For L=5cm, n;=2.14
(PPLN crystal), we have A, = 5.6x10° m? a the SPDC output plane and then
magnification by ~ 3 (= Fé&/dy) at the collimating lens. We expect that no further
magnification occurs through the ghost imaging lens (which would be true for long range
targets and d, = F in Equation (5)). In ghost imaging experiments the detector in the
reference arm is either a fixed array or a single element detector that is scanned in the
transverse plane. We assume that the detector is a 512x512 array and that the optical
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power directed to this arm is divided equally among the (512)? pixels, each of 10 xm size.
Assuming a photosensitive area of the detector of 10 zm linear dimension (i.e., 1x10™
m? area), the detector intercepts only a portion of the coherent area so that for the bi-
photon signal (reference) arm we have Mgt = 1. In the case of the pseudo-thermal
source the speckle size at the collimating lens is Dgpeckie = (Aif)/do = 31 zm, which is aso
larger than the pixel size, again giving Mgyt = 1. We then make the assumption
thatM = /Mg Mg i » Where Msopj is the number of degrees of freedom for the object

arm calculated in Figure 18.

So far in our consideration of SNR in coincidence counting we have ignored the effect
of background counts due to uncorrelated photons from the source, solar photons, and
dark counts. Following Hanbury-Brown,* we introduce a factor (1+a) to account for
background (although we continue to neglect uncorrelated photons from the source since
these depend on the details of entangled photon generation) such that

SNR = \/N_c\/ N1N2|/‘112|2 '
M

1+a)

(27)

Here (1+a) is the ratio of the total number of counts from all sources to the counts
originating solely from the source photons. For a pseudo-thermal source the value of a is
negligible at short range (< 100 m), but at greater distances it grows larger than 1 as the
source photon rate in the bucket detector begins to compete with the solar and dark
counts. For the entangled source the background is negligible over the entire range.

Although the relative significance of this type of background makes sense for these
two sources, the particular dependence on range depends on what source output power is
chosen. We arbitrarily chose avalue of 0.1 W in order to keep the entangled photon rate
of return from the target much greater than that from dark counts at ranges up to 10 km.
Despite this power being three orders of magnitude smaller than that assumed for the
photocurrent correlation case above, it is still many orders of magnitude greater than the
bi-photon limit of SPDC output, for which we can expect the visibility (= 142) to be equal
to one. Consequently, if one accounts for a drop in visbility due to accidental
coincidences from uncorrelated photons, the SNR will probably much smaller than
predicted in Figure 19. Another assumption made in the
calculation was that the output of both sources was split equally between the two arms of
the interferometer. This was within arange of splitting ratios that optimized the SNR for
the entangled beam case, particularly at 10 km range.

Overall we see again see that when we assume the ideal values of visibility (1, and
1/3) for the entangled beam and pseudo-thermal sources, the former gives rise to a
superior SNR over all values of range to the target. This is primarily a result of the
significantly smaller beam divergence of the entangled beam. When one properly
accounts for uncorrelated photons from the sources, this SNR advantage may be
minimized or even reversed. However, the degree of visbility reduction depends
critically on the output power assumed, and may aso depend on details of the source,
which we do yet know for the hypothetical case of N > 3 entangled beams.
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4 Quantum Imaging Experiments

Since the goal of QSP is to determine whether quantum effects can be used to some
advantage in a remote sensor in a militarily relevant environment, NGC set up a ghost
imaging apparatus with the intention of eventually testing interaction of the entangled
photons with an outdoor target. The main idea was to study the degradation of imaging
resolution due to atmospheric effects. The first task involved acquiring the necessary
SPDC source crystals, single photon detectors, and correlation electronics, and then
setting up correlation measurements on a lab bench. The sections below describe the

progress that NGC made in this undertaking.

4.1 SHG System Setup and Diagnostics
4.1.1 Nonlinear Optics

PBS1
HWP1
PM1
HWP2 <§7
PM3 1
KTP1

Lens

Hot Mirror

[ Pm2

Figure 20 Setup for generating the SPDC pump
beam.

We used a freguency-doubled
(Figure 20) 1064 nm Q-switched
laser (Spectra Physics, H10-106QW)
for pumping SPDC sources to
generate entangled photons (bi-
photons) at pulse repetition rates up
to 100 kHz. Initia coincidence/
imaging experiments a NGC
employed degenerate spontaneous
parametric down conversion (SPDC)
producing entangled photons at 1064
nm. This required (see Figure 20)
generating a pump beam at 532 nm
for which we used the above
NdYAG pump laser, and a
nonlinear crystal (SuperOptronics,
KTP type Il - designated as KTP1,
and AR-coated for input and output
wavelengths) to  double its
frequency. The crystal was 3 mmx3
mmx20 mm, with second order
nonlinear optical susceptibility given
by der = 3.55 pm/V and cut for

fiber with 50 um
diameter

connected to id201
(InGaAs APD)

L4, KBX052 v-pol

f =50.2mm™.

AN
BPF 10 nm at 1064 nm L3, KBXO55 Eggﬁ @
f = 62.9mm nm

CM2 CM1

g BPF 10 nm at 1064 nm

HWP4
PBS4 @
! 532 nm
KTP2 %
power
meter B

Figure 21 Setup for (degenerate) SPDC generation.
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noncritical phase matching. The crystal was housed in an oven (SuperOptronics, crystal
oven controller) set at 80°C to avoid cumulative damage due to gray-tracking at high
optical intensity.

Figure 21 shows the setup for generating entangled photons via another nonlinear
crystal - KTP2, which isnominally identical to that of KTP1, and is also AR-coated. The
output beam from KTP1 is vertically polarized with respect to the optical bench, which
becomes the pump beam for KTP2. After the two hot mirrors (Figure 20), two colored
glasses were added to further reduce any residual pump beam for KTP1 at 1064 nm.
HWP3 at 532 nm controls the polarization direction of the pump beam for KTP2. The
optical axisfor KTP2 is horizontal to the optical bench - the same configuration as KTPL1.
KTP2 is aso in an oven with temperature set at 80°C. Two cold mirrors (CM) were set
up toblock residual light at 532 nm. A lens with a focal length of 50 mm was used to

Table 8 SPDC efficiency.

Parameter Symbol Unit RM UMBC
Average Input

- Pavg mwW 100 300
Pulse Repetition

R Foulse kHz 50 8
Pulse Energy Epuise mJ 2 37.5
Number of Photons Nphoton Photons/pulse 5.36x10"° 1.00x10™
'F\,';irpsber et Pgiter Mahoton Pairs/pulse 1045 5000
SPDC Efficiency Nspoc 1.95x107"° 4.98x10™""

focus entangled photons into a smaller area for better detection. Table 8 compares the
efficiencies of the SPDC setups at NGC to that at UMBC. Both show how weak - ~ 10°%°
- the conversion is for optical parametric generation at these pump pulse energies. This
shows that the assumption in the SNR calculations regarding similar outputs for the
guantum versus baseline systems may be completely unredlistic given the amount of
electrical power that would be required, for instance to generate a 100 W idler beam in an
airborne platform. The efficiency is seen to be even wesker for the case of
nondegenerate SPDC in Table 9.

Table 9 Comparison of SPDC efficiency between degenerate and non-degenerate
cases.

Parameter Symbol Unit Degenerate Non-Degenerate
Average Input Power Pavg mw 100 200

Pulse Repetition

ava———— Foulse kHz 50 50

Pulse Energy Epuise mJ 2 4
Number of Photons Nphoton Photons/pulse 5.36x10" 1.07x10"
'F\,';if‘sber Al Monoton Pairs/pulse 1045 732
SPDC Efficiency TspoC 1.95x10™° 6.83x10™""
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4.1.2 Coincidence Detectors and Electronics
NGC obtained from idQuantique four avalanche photodiodes (APDs) — two Si (id100-
MMF50-ULN), and two InGaAs (id201-MMF-ULN) in order to enable degenerate ghost
imaging experiments at 1 xm, nondegenerate at 810 nm and 1550 nm, as well as tri-
photon experiments in which either two Si detectors and one InGaAs or one Si and two
InGaAs detectors would be used. These were always operated in Geiger (as opposed to
linear) mode in order to perform single photon detection. The Si APD operated
continuously, whereas the InGaAs APD was gated with a trigger input. The dark count
rate Rqark for the Si APD was extraordinarily low - less than 20 Hz — in agreement with
the vendor’s specifications. The InGaAs APD had many operational parameters such as
trigger rate, detector gate width, dead time, photon detection probability. The gate width
could be varied from 2.5 ns to 100 ns. Generally, the trigger rate, as determined by the
pulse repetition rate of the Nd:YAG laser, was 50 kHz to 100 kHz. The latter was
practically the highest rate

that

Laser could be employed as a result of
detector dead time constraints.
Trigger | With the single photon detection
Trigger probability (SPDP) set at 25 %
Delay Generator ——— we measured the dark count
rates at 10 kHz and 100 kHz.

. DPC 230 5 When everything else was fixed

igggogrﬁt v Tmgger 5 except trigger rate, the dark

_____ > InGaAs APD count probability was lowest at

Photon pulse 10 kHz among the available

Photon at internal rates. The data showed

810 nm ((( ))) adark count rate of 300 kHz at a

--> SiAPD P trigger rate of 100 kHz; we

elay cable assumed a conservative vaue of

Figure 22 Electrical layout for the coincidence 800 kHz dark count rate in our
measurements with nondegenerate SPDC. SNR mode! above.

The coincidence circuitry is

shown in Figure 22 for the case of nondegenerate SPDC. The InGaAs APD required an
electrical trigger since it operated in gated mode. The output of this detector was
correlated with that from the S APD using a time-correlated single photon counter
(Becker & Hickl, DPC230). The master laser Q-switch provided adelay generator (SRS,
DG535) with the trigger source. The delay generator compensated for the time (~ 350
ns) between the optical pulse and the electrical trigger output. Since the InGaAs APD
could detect an incoming photon only during the gate width, timing was critical. The S
APD was able to accept incoming photons at any time. However, a long cable was
introduced between the Si APD and the DPC230 so that the photon pulse at 810 nm could
be further delayed with respect to that of 1550 nm, and both positive and negative sides
of temporal correlation could be captured. We therefore measured coincidences by
treating the photon pulse of 1550 nm as “start” and that of 810 nm as “stop” inputs to the
correlator board.
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4.2 Experimental Issues
4.2.1 Background light

The first experimental issue we faced was that of a large amount of background
generated by scattered light from the Nd:YAG laser. Since the SPDC pump beam (the
KTP SHG beam) was generated externally to the laser this light had the opportunity to
scatter everywhere around the optical table, and eventually find its way to the APDs. We
minimized the scattered light effect by enclosing the receiver region with baffles. In
addition to the scattered light were photons from the SHG pump that were collinear with
the SPDC output, and therefore could leak through the hot mirrors, colored glass filters,
and HR 1.064 u«m mirrors directly into the detectors. All of these uncorrelated photons
contributed to a background that reduced the visibility in correlation measurements. We
mitigated this contribution to background by adding crystal dichroic mirrors before the
SPDC to highly reflect the 532 nm light while highly transmitting the desired 1064 nm
light, as well as a Pellin Broca prism for further spatial discrimination against the laser
leakage (see Figure 23).

An additional way

to circumvent the

PBS4 (attenuator and power background  problem

DM @ 532 nm Hwp4  measurment) was to replace the KTP

v H R crystal with one that

t U \ Pellin was phase matched to

4 Brokea produce two entangled

KTP l < 17" > / beams  that are
-<—|:|-I O I , nondegenerate at 810
' f = 250 mm HM / Mirror nm and 1550 nm. It

also created an

opportunity to explore

' dump the viability and

Figure 23 Modified setup for pumping the SPDC to reduce benefit of a
laser leakage at 1064 nm. nondegenerate source
for ghost imaging for

the first time. Our aim was to test the recent UMBC predictions for resolution of such a
configuration.** For example, atmospherically transmissive photons can be used for the
target, while the shorter wavelength ones would be retained locally by the more sensitive
detector.

4.2.2 Spurious Effects of InGaAs APD

Another contribution to background counts came from the InGaAs APD that was used to
detect photons at 1550 nm. This included the effect of high bias voltage in the detector,
and an increase in the background count in proportion to input photon flux. As an
example, Figure 24 shows the temporal profile of an entangled beam at 1550 nm captured
by an InGaAs APD. The pulse (fit by a Gaussian) sits on top of an offset that islinear in
pump power (see the right side of Figure 24); this was not observed in the Si APD,
however. Those spurious counts were therefore deemed to be unique to the InGaAs
device and not to input photons.
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The InGaAs APD had several parameters that could be adjusted for optimization:
time delay, dead time, photon detection probability and gate width. The device offers
four options: 10 %, 15%, 20% and 25%. Figure 25 shows the temporal profile of dark
counts at al of those values. As we show in the figure, the huge spike at the start of
detector gate was due to the high value of detection probability. The data were collected
for 100 s with respect to the master trigger from the laser while its beam was off, and
with the detector sealed off from any external photons. Although the starting times of
each temporal profile were the same, they are shifted from each in the plots by 10 ns
consecutively for easy comparison. The spike at the start of the gate disappeared at 10 %
and 15 %. The inset on the right side illustrates it more clearly. The graph on the right
side shows the total dark count, which is exponential in detection probability, not linear.
The operational parameter is related to detector bias voltage. Although the higher value
increases senditivity, a user has to take into account its side effect as shown in this
temporal profile. Such spurious pulses created at random time will affect coincidence
measurements in such away that it washes away the correlation peak when it is used as a
start. After discovering the relation between the spike and offset with the higher photon
detection probabilities, we kept the latter at the low value of 15%.

Chech: salected data with Gaussian portion
5000 - : - Power Dependence
4500 200
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4000
5 160 P
3500
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1500 m 40
20 Pzl
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0
i 0 ] 10 14 20
L pump power (myy)
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Figure 24 Gaussian fit to temporal profile of InGaAs APD output (right), and pump
power dependence of offset term (right).
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Figure 25 Dark count profile at various detection probabilities.
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4.2.3 Spatial overlap of correlated photons
In obtaining the correlation peak, we learned the critical importance of the spatial overlap
of the correlated photons. Each of the bi-photons in the entangled beam observes the
relation (i.e. the phase matching condition)

Kp =ki +ks, (28)
where k,, k; and Kk, are the wave vector of the pump, idler, and signal, respectively.

While Ep is the same for every bi-photon, IZS is not the same all the time. Rather, it

spreads over a space like a cone and its cross section isacircle. In order to capture all of
the photons regardless of the value of IZS , a bucket detector in one arm is set up at the

focus of alenswith alarge aperture. The detector should be larger than the size of beam
spot at the focus. When it is done properly, the other detector can be located anywhere in
the given space to produce the correlation peak. Otherwise, the correlation peak depends
on the location of the detector. For example, when we connected an optical patch cable
with a fiber core diameter of 62.5 um to the end of the fiber collimator we could not
observe the correlation peak. But when we replaced the patch cord with one that had a
core diameter of 400 um, the peak was detected. This was direct evidence for the
importance of maximizing the capture efficiency of the bucket detector in order to
guarantee detection of photons with wave vectors correlated with those of the signal
photons entering the other detector.

In our setup at NGES, we used optical patch cables with core diameter 50 ym. This
was because our detector diameter was 50 pm and there seemed to be nothing to gain by
increasing the core diameter of optical patch. On the other hand, the beam diameter was
on the order of 200 xm as determined with the InGaAs camera. It was at this point that
we realized that our two detectors were not configured properly from the spatial
perspective so that we might not efficiently (or indeed, ever) observe correlated pairs of
photons. The observation of correlation peak required a very fine and reproducible 3D
stage and optical patch cables with larger core diameters than what we normally used in
our lab. The latter might not increase the single count rate, but it will surely increase the
probability for spatially overlapping correlated photons. Therefore, we henceforth
employed multimode optical patches with 200 and 400 pm core diameters.

4.3 Observation of a Correlation Peak

After working closely with UMBC on their pulsed correlation setup with our InGaAs
detectors we identified the technical obstacles to detecting correlation peaks, including
those outlined above as well as others not reported here. And after taking measures to
minimize detector artifacts and classically correlated counts, and incorporating fiber
pigtails large enough to capture the spatially correlated photons, we were able to detect
true bi-photon coincidences, as shown in Figure 26(a). The square marks in this figure
show the correlation profile with an average pump power of 2 mW. It consists of two
parts. a very narrow peak at the center and a large hump. The former is the correlation
peak g®@(0), the FWHM of which is less than 1 ns. The large hump has 50 ns FWHM
and is unique to the correlation profile of a pulsed beam, since it is not shown in the
correlation profile by a CW pump (as observed at UMBC). The solid curve in Figure
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26(a) was generated by correlating the temporal profile of thel550 nm beam to that at
810 nm. It was scaled and shifted to be compared to the data, which mimics the hump of
the data. Inlight of this, the hump represents the classical correlation of the two temporal
profiles.
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Figure 26 Correlation profile: (a) Data and (b) Cartoon explanation.

The two entangled photon beams each contain a huge number of bi-photons per
pulse. However, each APD detects only one photon per pulse since its dead time is much
longer than the pulse duration. Thus, each detector has a finite probability of observing
photons created at different times within the pulse duration. Figure 26(b) illustrates the
underlying mechanism for the classical correlation. We suppose, for instance, that three
bi-photons are created via SPDC while the pulsed pump passes through the crystal. Note
that each of the three can be generated at different times within the pulse duration. Asa
result, coincidences show a combination of different pairs (right part of Figure 26(b)),
giving rise to the classical correlation. Of course, the greater the number of pairs
produced, the greater the probability of measuring coincidences among “wrong” pairs.
This is therefore the fundamental tradeoff in terms of attempting to generate a large flux
of entangled photons for a remote sensor: the greater this flux, the smaller the
contribution of true coincidences to the second order correlation g®(0). In the December
2008 monthly we specifically compared the performance of pulsed versus CW sources
with the same average power, and showed that, because of a much greater number of
photons per mode, the pulsed system is expected to have a g®®(0) that is several orders of
magnitude smaller. Consequently, we assume a CW source in our modeling in Section Il
above.

4.4 Performance Comparison Between Correlation Peak and Ghost Imaging
During the final days of QSP, NGC attempted to obtain a ghost image of a transmissive
target. The setup for obtaining ghosting imaging was similar to that for obtaining a
correlation peak, except one notable difference: the detector on the reference arm was at
the image plane of the imaging lens. For clarity, the lens on the reference arm was called
a “collimating” lens in the configuration for finding correlation peak and an “imaging”
lens in the configuration for ghost imaging. The location of imaging lens and detector
was determined by Gaussian Thin Lens Equation (GTLE)
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—=Ty, 29
f a b (29

where f is the focal length of imaging lens, a is the distance from the object plane to the
imaging lens and b is the distance from the imaging lens to the imaging plane. Since the
detector was not located at the smallest spot size of the entangled beam, the configuration
for ghost imaging collected fewer photons during this acquisition than in that for the
correlation peak. In fact, the reference detector is collecting only a small fraction of the
light in the image plane in order to spatialy resolve it, whereas in the correlation
measurements virtually all of the photonsin each arm are collected by the detectors.

Figure 27 shows one of
the results with the system
configured  for  ghost
imaging. For easy
comparison, no targets
were set on the target arm
meaning 100 %
transmittance. The
imaging lens had foca
length of 100 mm. The
data were acquired at one
“point” in the image plane
for 46000 s, nearly 13
hours. The average pump
power was 17 mW. One
can compare this result
with that shown in Figure

IntekE hy )

. . _ 26(a). It is easy to
Figure 27 Measured coincidences with the system conclude that the SNR is

configured for ghost imaging. significantly reduced in the

case of ghost imaging.

Upon further examination of the setup it was determined that the detector deviated a
bit from the calculated image plane. Furthermore, because of the small focal length used,
any small deviation could have a significant effect, leading to a large amount of blur in
the image. We were therefore not able to accurately reproduce the object features in our
first ghost imaging trial.

4.5 Ghost Imaging with a Diffusive Target
Under the program, we sought to determine whether there is a degradation in
entanglement (or the status of quantum source) due to the presence of a diffusive target.
UMBC concluded theoretically that a diffusive target would not change the entanglement
of the source. Recently UMBC published ajoint paper with ARL on the ghost imaging
with a pseudo-thermal source and a diffusive target that indirectly corroborates this
assertion.*

Earlier UMBC reported ghost imaging with a degenerate source at 900 nm. The pump
beam was CW at awavelength of 450 nm, and the nonlinear crystal was BBO. The target
was a mask with double dit. NGC visited UMBC and worked closely with one of the
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researchers there in order to (1) reproduce the result together and (2) apply the system to
a diffusive target. NGC confirmed the initial result with the mask target in transmittal
mode. When the mask target was replaced by a diffusive target, we could not obtain a
correlation peak, much less a ghost image. There were two possible explanations for this
fact. First, the diffusive target did not preserve entanglement and ruined the correlation
peak in the coincident measurement. Secondly, the pump power was too weak to
overcome the loss due to diffusive scattering. At the time of the experiment, the pump
source was an Ar ion laser that had a plasma tube that was not operating at its maximum
output power. Its maximum power was only 100 mW. In light of the efficiency of
generating entangled photons we estimated the required pump power to be at least 1 W to
overcome the loss in the diffusive target. Given these limitations, we could not reach a
meaningful conclusion on this study, but given the resources necessary to repair the laser,
it is hoped that UMBC can eventually repeat this experiment when its pump source is
restored to its full capacity.

4.6  Ghost Imaging with Nondegenerate Source - Post QSP Activity Following
Immediately from QSP Efforts

As detailed immediately above, at the end of the QSP program, NGC had not succeeded

in forming a ghost image with its pulsed non-degenerate source of entangled photons.

However, immediately after the end of the program, some IR&D funding was applied

to

continue with the work
directed at obtaining a ghost
image with the setup

to InGaAs APD . developed on the QSP
Collecting Lens program. Asaresult we have
_ "3 Object measured what is, to our
Imaging knowledge, the first ghost
Lens d, KT image realized with a pulsed
v — nondegenerate  entangled
. , source. This work is
: : i described in the following
d; »< d, —die— d; —> paragraphs.

We had  previousy

modified the existing setup
Figure 28 Experimental setup with distance for making coincidence
relationship. measurements in order to

obtain a ghost image, as
reported above. The main changes were in the distances between the various optical
components and objects. Figure 28 shows a schematic diagram that highlights the
pertinent distances for the development of a ghost image. Their values are summarized
in Table 10, where fing is the focal length of theimaging lens.
Table 10 Values for the distances in Figure UI\_/IBC_has p_ubllshed apaper on
o8, ghost magmg with a nondegenerate
source. In accordance with the

Parameters d; d, da fina | theoreticall development in this

Values (mm) | 304.8 | 50.8 | 444 | 62.9 | work, we calculated the distance
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Rimg from the imaging lens to an image plane along the reference arm and the
corresponding magnification Ming. For comparison, we calculated the same for the
degenerate case. Table 11 summarizes the results where Aqp and Aws are the central
wavel engths along the object arm and reference arm, respectively.

Table 11 Calculation of Rimg and Mipg. The magnification by the

nondegenerate source

Paramete | Uni | Nondegenerate Degenerate configuration is about 65% of
r t Source Source that  obtained  with  the
Aop; nm 1550 1064 degenerate source, so the two
Rimg | mm 67.0 69.1 distinguished. We validated the
Mimg 0.065 0.098 theory through our experimental

results as follows. We printed out an object on transparent film (3M, PP2500) as shown
in Figure 29. It was prepared so that it could be mounted directly on alens holder. The
circle represents the inner diameter (1 inch) of the holder, which was used for alignment.
The two white strips had a width of 1.4 mm and the width of the black strip at the center
was 1.2 mm.

We moved the tip of the optical patch cord for the
Si APD toward the imaging lens. We set it 5 mm off the
calculated value for Ring, Since the single count rate was
decreasing and eventually became comparable to the
background count rate as we approached the calculated
67 mm imaging distance from Table 11. The 5 mm
offset does not represent a particularly optimum value,
but we will see below that we were able to obtain a
ghost image in thisway. We obtained correlation peaks
as we scanned the fiber across the plane (in the
direction of xsi in Figure 28) in steps of 0.5 mil. Each
correlation profile took 1 hour with the average pump

power fixed at 10 mW.
Figure 30 shows several correlation profiles taken at
various location xg; of the fiber tip for the St APD. Each

Figure 29 Object with two
white strips.

channel in the abscissa on the graph in Figure 30 corresponds to a time shift of 164 ps.
The as-measured correlation profiles lay one on top of the other. However, in order to
aid with visualization, each profile is shifted to in proportion to the change in xs; for each
profile (a conversion of about 260 ps per zm of xs; proved to be convenient for display
purposes). The legend in Figure 30 shows the actual value for xs; with for the particular
trace. Two of the measured correlation profiles show strong peaks that are related to the
clear strips at the center of the object. Other profiles do not have the same peak. These
are related to opaque part of the object.

In an earlier report, we defined three useful parameters from each correlation profile:
Cmax, Cmin @nd AC. We plotted Cax and Crin as a function of xsi. (shown as “Position” in
the graph) and Figure 31 is the result. The error bar in Cp, reflects the standard deviation
AC. The black line in this figure represents the pattern in the object (multiplied by the
magnification for the nondegenerate case.) The maximum and minimum values in the
line are chosen to follow the highest value for Cnax and the average value for Cpin,
respectively. Although it appears blurred, it can be seen that we have observed a ghost
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image of the two white strips in our object/target. The image is certainly not as sharp as
the origina pattern, but it can be improved by adjusting some of the parametersin
the

Correlation Profile

Ol H\ Lde oo
i M A{ HM W ***** o
NI

1 \l“ H M [l ” H | “ w ‘ 3 3 |

L¥ il M i "'M“ ‘| .” ‘M W’ MMWWN At

Time (channel)

Figure 30 Second order correlation peak at various values for Xs;.

setup. The agreement between the measured ghost image and the magnified image of the
object serves to confirm that the theory developed in [46] describes the experimental
results obtained here. Note also that in Figure 31, we see atotal of 30 correlation profiles
each of which was approximately one hour in duration. Thus, the total time to collect
thisimage was of order 30 hours. Finally, we note that, defining the visibility as

V = C:max _Cmin ’ (30)
Cmax + Cmin
we can deduce an approximate value for the visibility in our measured ghost image that is
of order
~130-60 70

130+60 190

=0.37.

(31)
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Figure 31 Ghost image of the object. The object profile (suitably magnified per
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5 Triphoton Source Development

Although source development was not a mgjor thrust of the program, the task was
nonetheless defined in the SOW, and such development would appear to be necessary
from the standpoint of eventually demonstrating resolution enhancement in quantum
ghost imaging. Consequently, NGC spent a minimal amount of time modeling aperiodic
gratings for producing tri-photon (N = 3) beams using the numerical procedure outlined
by Kartoglu et a.* Specifically, we considered two simultaneous optical parametric
generators (OPGs) followed by a sum frequency generator (SFG) to generate one idler
around 1550 nm and two photons in the visible and near IR (810 nm) that will stay local
and be detected with S APDs we have purchased. Recently, UMBC has reported
generation and coincidence detection of a (N =3) triphoton in which the state was created
using a hexagonally poled photonic crystal. This takes advantage of two down
conversion processes, and one up conversion process that are simultaneously quasi-phase
matched (QPM). Such acrystal is not commercially available. However, we can design
aperiodic gratings for the 1-D case, and have the nonlinear optical crystal poled in a
ferroelectric medium, or epitaxially grown in a non-oxide semiconductor.

Because the photons that illuminate the target will propagate outdoors one must
choose a wavelength for which there is low loss due to atmospheric attenuation and
turbulence, and that is eye safe as well. Photons in the infrared can satisfy these
requirements. The photon retained locally in the laboratory (or in a sensor on an airborne
platform) can be chosen to have wavelengths compatible with a Si avalanche photodiode
to take advantage of their low noise. Figure 32 (left), for example, shows a schematic
diagram of a crystal pumped by visible photons. By setting appropriate phase matching
conditions, the first two (SPDC) interactions can be made to have equal amplitude. Two
of the products then mix to form a third photon, in the visible (43), which is entangled
with two others - one visible (4;) and one infrared (A, for atmospheric propagation) -
formed from the first two SPDCs. In Figure 32 (right) we plot the power spectral density
of the QPM spatial grating, showing that the overwhelming energy is channeled into the
interactions yielding these three photons. The other features in the spectrum can be
minimized through an iterative process in the algorithm for the grating design widths.
The relative amplitudes of the photon fluxes can also be adjusted, for example, to
maximize the output power in the beam that propagates to the target.

Subsequent to UMBC's theoretical finding that at least two photons must interact
with the target, the design for the N = 3 state was changed to alow for the these two
photons to have wavelengths compatible with the atmosphere, and to locally hold a near-
infrared photon that could be detected by a Si APD with high efficiency. In order to
accomplish this we again had two simultaneous OPG interactions, but then mixed s, and
i1 in difference frequency interaction to form Ag¢q = 1.55 um. We also lengthened the
crystal in the design to 5.5 cm to create an extremely high flux beam. A custom mask
design was submitted to Deltronic, but we were subsequently told it could not currently
be fabricated due to constraints in their poling technology. We therefore ordered only a
uniform grating of 5.5 cm length to achieve extremely high flux for outdoor experiments;
adifferent vendor or approach would have to be pursued for the aperiodic idea.
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Figure 32 Schematic of QPM grating to generate three entangled photons (left) and
power spectral density of the grating (right).
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6 Quantum Well Multiple Photon Absorbers

6.1 Introduction

The use of entangled state systems for high-resolution imaging depends on the
simultaneous detection of the entangled photon pairs used in the imaging. Present
experiments employ two separate photodetectors and contain electronics that count
simultaneous detections events in the two photodetectors. Besides inherent inefficiencies
of this technique, this method is viable only with single-element detectors; and imaging
detector arrays cannot be used. To create a high-resolution imaging system with
entangled-state photons, true two-photon detection in a single detector element is
required.

In multi-photon detection, the key characteristics of the absorption are the
wavelengths of the photons detected, the delay time allowed between the absorption of
the individual photons of the photon pair, and the absorption cross-section for the two-
photon absorption. The goal of this work was to examine each of these characteristicsin
the context of an absorption region created by a coupled quantum-well semiconductor
layer structure. By varying the semiconductor material and layer parametersin a coupled
guantum-well system, the positions of the discrete energies in the quantum wells can be
controlled. The energy alignment of these levels determines the wavelengths of the
photon absorptions. In addition, the barriers between the wells can be used to control the
transition rates among the energy states. This controls the simultaneity required between
the times of the absorption of the two photons. Finaly, the number of quantum-well
layers coupled to the virtual state will determine the relative two-photon absorption
coefficient of the system.

A two-photon device must
make use of a virtual energy
E, + ——x—— 2" Excited State state in the absorbing materia to
ensure that the photons are
absorbed simultaneously, or
nearly simultaneously. In a
o material  with a standard
absorption of multiple photons
as illustrated in Figure 33, the
system first absorbs a photon
E, + —f—— 1%Excited State that matches the energy for a
transition from one energy
eigenstate of the system to a

Energy

o, second energy  eigenstate.
Subsequently, a second photon

o, =B of the correct energy is absorbed

o+ ——L—— GroundState hoo=Ex-E; | by the material and the system

makes the transition from the
second to a third energy
eigenstate. In this energy

Figure 33 Energy transitions using two photons with
an intermediate energy eigenstate.

structure, the system will remain
in the intermediate excited state for some period of time. Thus, uncorrelated photons that
are not part of an entangled pair can be accidentally detected if their arrival is within
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some finite time window. In a detection system that is used for imaging, these false
counts will be a background noise that may overwhelm the true signal.

Since any energy eigenstate that is used in the absorption process will have a
relatively large relaxation time, it is difficult for a two-photon detector to use such an
arrangement; and for this reason, a two-photon process is preferable. For a two-photon
process, the system cannot use an intermediate energy eigenstate, but it must use a virtual
energy state. Such a system occurs in Cs-vapor atoms where two-photon absorptions
have been examined®. As is

shown in Figure 34, a transition
from the ground electronic state of
the atom to one of the first excited
states can occur by one of two
means. For a transition from the
ground state with | = O to the first
excited state with | = 1, a single
photon of the proper energy AE =
han can supply the required
energy. In the same system, the
transition from the ground state
with | = 0 to the first electronic
excited state with | =0 or I = 2 is
first-order forbidden. However,
for an intense beam of photons
with energy that is half the energy

Energy

Virtual State

O3]

Ground State

Figure 34 Two-photon absorptions in Cs atoms | Separation between the ground

using virtual states as the intermediate state in the | state and the | = O first excited
transition. state two photons can be absorbed

simultaneously. This pair of

photons supplies the required energy for the electron transition to the excited energy
eigenstate. The pair of photons interacts with the material to form a virtual energy state
allowing the absorption of these photons to occur. Since the two photons must arrive
simultaneously, the virtual state has a zero lifetime. Thus, the probability that two
identical energy photons will arrive at the atom simultaneously is vanishingly small.
Therefore, background photons cannot activate the two-photon absorption process and
will not produce noise in the detection system.

The two-photon absorption process is inefficient even if the energy and time
constraints on the photon pair are fulfilled. This process can be increased, if the total
system has a nearby energy state that enhances the virtual state absorption process. The
most well known application of this method is in resonance Raman scattering®, where
the nearby energy state is an energy eigenstate of the atom. We have examined
enhancement of the two-photon process using asymmetric semiconductor quantum wells
that create the necessary energy states to resonantly enhance the two-photon process.

6.2 Asymmetric Coupled Quantum Well Absorption Structure

A semiconductor quantum well consists of a single layer of material A embedded
between two thick layers of material B, where B has an energy band gap larger than A
and where the valence and conduction band discontinuities are such that carriers are
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confined in the A material. This is the situation for a variety of pairs of semiconductor
materias GaAgAIGaAs, GalnAgAlINAs, GaSb/AlISh, GalnAsP/InP, etc. In this work,
we focused on the well-analyzed GaAs/AlGaAs semiconductor layer system that can be
easily obtained. The energy level scheme in the conduction and valence bands of the
semiconductor-layered structure is well described by simple carrier confinement in a
guantum-well potential, shown in Figure 35. Two discrete bound states in the conduction
band of the quantum well, with a continuum of states available above the barrier energy,
and two discrete bound states in the valence band of the quantum well, with a continuum
of states below the barrier energy are shown in the figure. Electronic transitions can
occur between the bound quantum-well states through the absorption or emission of
photons. These transitions are the same as the single-photon transitions that were
illustrated in Figure 33.

To determine the absorption spectra of
A these structures properly, the energy gaps
between the valence and conduction bands

of the well and barrier materials are

T c required. In our analysis, the energy

Ve sarer “  ConductionBand | !€velsof the conduction band electrons are

= ¢ c calculated in the envelope wave function

3 < approximation using a Kane model;*® and
L

the hole bands are described using the
Luttenger Hamiltonian™. The offsets for
the valence and conduction bands are

Vv.b%mer Ez: Valence Band taken form Watanabe, et a.* It is
- assumed that the initial detector structures

2 direction g will operate at cryogenic temperatures to

AlGaas |GaAs| AIGaAs reduce phonon-scattering effects; thus,
Layer |Layer Layer temperature-dependent effects on the band

energies were included. Semi-empirical

Figure 35 A single quantum-well layer
structure with GaAs wedl material within
AlGaAs barrier material.

models by Varshni>® and Passler™ for the
thermal effects on band gaps were used to
determine the energy gaps used in the

guantum-well layers. These calculations
allow the determination of the material structures needed to produce the quantum well
and barrier characteristics for the two-photon absorption region.

To analyze the coupled quantum-well structures to determine the transition rate
characteristics, we used a transfer matrix model and employed Mathematica code to
calculate the bound-state wavefunctions and energies. Initially, simple layer systems
were examined and the results were compared to analytic results. As an example, the
bound-state conduction-band energies and eigenfunctions of a single quantum well with
one, two, and three bound states, are shown in Figure 36.
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(b)

Figure 36 A single quantum wells
where the well depth is set to create: a)
one bound state, b) two bound states,
and c) three bound states within the well.
The dashed lines represent the bound
state energies for the well with the
corresponding wave functions plotted in
the same color.

(b)

5N

Figure 37 A pair of asymmetric quantum
wells with a degenerate state, where the
separation of the wellsis: a) 44, b) 2a, and
¢) a, where aisthe thickness of each well.

Figure 37 illustrates two asymmetric quantum wells that are separated by
successively smaller barriers. In this pair of quantum wells, the well widths and depths
are chosen so that the second bound state of the degp quantum well has the same energy
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as the lone bound state in the shallow well.

As expected, there is very little interaction

between the wells with alarge barrier separating them and a large interaction between the

wellswith small barriers.

ou
¢ 10

\ 05

X

\V'C f

Figure 38 A pair of asymmetric quantum
wells where the separation of the wellsis
a, and the well depths are chosen so none
of the states are degenerate.

Figure 38 shows a pair of wells where
the levels are not degenerate. Although the
separation of the wells is equivalent to that
in Figure 37(c), the wave function from the
first guantum well state that is present in the
second quantum well is much smaller than
that shown in Figure 37(a).

These energy-level and energy-eigen
function calculations are used to guide the
structure  design. The energy-level
differences yield the absorption wavelengths
and the energy-eigen functions determine
transitions rates and transition times
between the bound states in the quantum-
well system. Using our transfer matrix
caculations, we can examine the

spontaneous lifetimes for energy eigenstates in various quantum-well structures. These
calculations are based on standard first-order electric-dipole transitions between the

A
ECZ
v
)
(@)
E \ E
w Cl
< a—>
AlGaAs GaAs AlGaAs
Layer Layer Layer
z direction
Figure 39 Transitions for the finite
guantum-well system calculated using
electric-dipole interactions.

guantum-well bound states. In the first set
of calculations, simple single quantum wells
were examined, as shown in the following
figures.

Figure 40 illustrates the effect of
increasing the width of the quantum well
from a= 3 to a = 6 nanometers (tens of
atomic layers) for aV =1 eV energy well.
These parameters are within the range of
values for standard semiconductor quantum-
well structures grown for a variety of
applications. As expected, the lifetimes
found ae on the order of tens of
microseconds for these well parameters.

Figure 41 shows the effect of varying
the well depth for a fixed well size of 4 nm.
Again, as expected the spontaneous lifetime
for the quantum-well states increases with
well depth. These simulations show that the
well depth has a much smaller effect on the
spontaneous lifetime of the excited quantum

well state than the well width has on this lifetime. The lifetime of a 4-nm wide, infinite
quantum well was found to be 14 us, a small shift from the lifetimes for wells a few eV

deep. Finally, we calculated the lifetime
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Figure 40 Electron spontaneous lifetime for the first
excited statein a 1-eV deep quantum well.

for a 0.2-nm sguare well
that has a well depth of
176 eV. This is
approximately the size of a
hydrogen atom, and the
energy separation of the
states in the well is 13.6
eV, the same as the 2p to
1s trangition in the
hydrogen atom. The
calculated lifetime of 6x10°
19 5 is comparable to the
hydrogen atom lifetime of
2x107° s, when one takes

into account the
degeneracy of the 2p state
of the hydrogen atom.

Next, we examined the

transition probabilities and lifetimes for single and two-photon absorption in our
asymmetric coupled quantum-well systems. In this system, a pair of quantum wells with
different well widths is coupled through a thin barrier. This system is illustrated in
Figure 42. Two states are present in the first well; these states are labeled Ec; and Ecs.
The second well is the same well width as the first well; however, it is not as deep as the
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Figure 41 Spontaneous lifetime for the first excited state
in a4-nm wide quantum well.

strength (barrier height and barrier thickness).

first  well. Thus, the
bound-state  conduction-
band energy (Ecp) in the
second well is larger than
the lowest bound state in
the first well. Because the
wells are separated by a
thin barrier, the second-
well energy state couples
through the barrier, and a
virtual well state is found
at energy Ec in the first
guantum  well. The
coupling strength, and thus
transition rates for single
and two-photon
absorptions can be
controlled through the
choice of the barrier

Figure 43 isaplot of the two-photon absorption rate that occurs when the second well
depth is varied. In this simulation, the barrier width is 0.5 nm, one-half the well widths
used. The transition rate increases by more than 10° when the first photon energy
matches the Ec; to Ec; transition energy and the second photon energy matches the Ec; to
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Ecs transition energy. Thus, by including the coupled well state, a virtual two-photon
absorption system can be created in the semiconductor structure.
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Figure 42 Conduction-band energy
structures and for asymmetric coupled

guantum-well system.

Figure 43 Two-photon transition rate where
the intermediate level is tuned into and out of
resonance with the photon energies.

In Figure 44, we show the variation in the two-photon absorption transition rate as the
barrier width is changed. From this figure we can see that as the barrier strength is
increased, the intermediate transition is less coupled to the core quantum well, and the
two-photon absorption strength decreases. This is true for both resonant and non-

resonant cases.
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Figure 44 Two-photon absorption transition rate for
varying barrier thickness, where the transition
energies are dlightly off resonance with the photon

energies.

The quantum-well structure
that we have anayzed is
analogous to organic crysta
materials that have
demonstrated high two-sphoton
absorption enhancement.> The
basis for the design of the
organic crystals was discussed
with Dr. Goodson a the
DARPA QSP workshop, and it
is similar to our asymmetric
coupled quantum well design.
In the organic crystals, three
eigenstates of the underlying
structure that binds the carrier
are present. In our structure,
these are supplied by the core
guantum-well system, and they
are designated as the ground,

intermediate, and excited states in the accompanying Figure 45(a). In the organic crystal
material, the additional states that form the virtual intermediate states are supplied by the
energy states of the surrounding organic crystal structure. Again, as in the organic
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crystals, a set of states that are not part of the bound-state structure are formed with
energies near resonance with the intermediate state of the bound system. These are
supplied by the asymmetric coupled quantum wells, and in Figure 45 they are designated
as the extended states of the system. The extended states are not eigenstates of the
underlying core and are the basis for a virtual state that is nearly resonant with a true
eigenstate. The near-resonance enhances the transition probability for the virtual state,
and the extended states form a basis for a larger optical absorption cross section.
Superlattices (the asymmetric coupled quantum wells in our design) with many periods
have been used in various electronic and optical quantum-well devices and these
structures can be fabricated to examine the absorption cross section of the designs. The
additional feature shown in Figure 45(a) is the use of a non-sgquare well in the core well
layer. This non-square well allows additional tuning of the absorption energy from the
intermediate to the upper state of the core quantum well.
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Figure 45 (a) Asymmetric coupled quantum well structure that mimics (b) two-photon
absorption organic crystal material (from Lee and Goodson ref.[55]).

The use of these virtual intermediate states has two effects. Thefirst isanincrease in
the overall two-photon absorption cross section. Thisincrease is related to the geometric
size of the absorbing region for the second incident photon of the two-photon pair. In the
case of the organic crystal, this goes from the initial absorbing atom, to the size of the
crystal molecule. In the case of the semiconductor quantum-well structure, this changes
from the size of the core quantum well to the size of the core plus the size of the coupled
well structure.  Superlattices (multiple quantum well structures) of a hundred periods
that exhibit coherent (band structure) characteristics have been grown using molecular
beam epitaxy techniques. With this structure the two-photon absorption cross section can
be increased by severa orders of magnitude using this structure.

A second benefit of using the virtual photon technigue is the non-classical absorption
properties of entangled two-photon absorption (ETPA) compared to the classical two-
photon absorption (TPA). The theoretical modeling of virtual state absorption ETPA
predicts that for low photon number the absorption is linear with intensity, compared to
the quadratic absorption of non-entangled photon pairs.®® Using the enhanced absorption
in their organic crystals, Lee and Goodson were able to demonstrate this linear ETPA
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rate compared to the quadratic nonlinear TPA rate (as shown in Figure 46). This linear
effect increases the ETPA absorption rate slightly over the TPA absorption rate for

extremely low photon flux rates.
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Figure 46 Linear ETPA rate and quadratic random
TPA for porphyrin dendrimer at different
entanglement times (from Lee and Goodson ref.
[55]).

6.3 Proposed Semiconductor
Quantum-Well Test
Structure

Based on our examination of the

asymmetric coupled quantum-

well system we propose the
following test structure design to
corroborate the modeling done
under this project. The test
design is a modification of the
analysis, alowing  specid
measurement capabilities to be
used. We have chosen the
GaAgAIGaAs material system
for the test structure.  This
semiconductor system is the best
understood 111-V semiconductor
layer system and one that can be
grown in the most controlled
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Figure 47 GaAs/AlGaAs proposed test structure.
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fashion with the lowest number of crystal defects. Molecular beam epitaxial (MBE) is
routinely used for growing these materials and this growth technique has atomic
monolayer precision that is needed to realize these structures. Figure 47 illustrates the
first test structure, used to measure the two-photon absorption rate and various relaxation
rates in the system. Table 12 lists the layer characteristics of the test structure. The
guantum well materials are GaAs with a bandgap at 60K of 1.514 eV, and the outer and
barrier materials are Alp3Gag7As. This materia is virtually lattice matched to the GaAs
layer, thus minimizing any crystal defects due to lattice mismatch between the layers.
The barrier width of 2 nm was chosen to allow strong coupling of the quantum well
states, as shown in the calculations.

The test structure system is grown on a GaAs substrate and a series of GaAs/AlGaAs
superlattices that lattice stabilize the substrate surface, pinning any possible substrate
defects. To increase the absorption in the sample, the test structure should be repeated 10
times, with approximately 50 nm of Alg3Gap7AS between the test structures to isolate
them from each other. Finaly, a50-nm GaAs layer should be deposited on the top of the
test structures to cap the AlGaAs layer preventing oxidation. A second test structure with
adlightly larger barrier (3 nm) can also be created to examine the change in the transition
times as predicted by the model. A third test structure that incorporates multiple coupled
guantum wells (as shown in Figure 45) can be examined to address the increase in two-
photon absorption cross section due to the extended states in the coupled quantum well
region. Inthistest structure the GaAs coupled well (4 nm) and the Alp3Gag7As barrier (2
nm) would be repeated (10x) before the outer barrier layer of Alp3Gag7AS.

Table 13 lists the quantum-well

Table 12 Test structure materials and eigenstates and their energies with
thicknesses. respect to the top of the valence band

Material Description Width (nm) and the bottom of the conduction band.
Alo.Gag-As | Outer Barrier The use of the conduction band hole
GaAs Core Well (W) 10 state as the ground state of the two-
AlgsGagsAs | Inner Barrier (B) 2 photon absorption was chosen to allow
GaAs Coupled Well (W») 4 the use of standard tunable sources for
AlpsGagsAs | Outer Barrier the characterization of the two-photon

absorption. Based on the calculated quantum-well energies, the first photon of the two-
photon absorption is at an energy of 1.610 eV, or a wavelength of 770 nm. The second
photon of the two-photon absorption is at an energy of 0.019 eV, a wavelength of 65 um,
or a frequency of 4.6 THz. These wavelengths match well with the optical-pump /
THz-probe spectroscopic system used at UMBC. The titanium-sapphire optical-probe
laser has a range 750 to 800 nm and the THz-probe source has a range of 1 to 10 THz
covering the absorption features of the asymmetric coupled quantum-well system. The

Table 13 Quantum-well energies for proposed test structure.

Designation Description Energy measured from
band edge (eV)
EH1 First Heavy-Hole Energy in Core Well -0.008
EC1 First Electron Energy in Core Well 0.027
EC2 First Electron Energy in Coupled Well 0.088
EC3 Second Electron Energy in Core Well 0.107
EC4 Third Electron Energy in Core Well 0.226
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pump-probe system has a temporal resolution on the order of 100 fs and allows the
examination of the various absorption and relaxation times in this system. With this
information, the possible two-photon correlation times can be determined.

6.4 Conclusions = Quantum Well Multiple Photon Absorbers
Based on our examination of the asymmetric coupled quantum well system, we believe
that two-photon absorption can be obtained with temporal characteristics required for
correlated photon measurements. The correlation times can be controlled through the
barrier strength of the region separating the core quantum well and the coupled quantum
well. The wavelengths for the two-photon absorption can be determined by the proper
choice of the semiconductor barrier and well materials and the quantum well thicknesses.
The test structures and optical characterization proposed will demonstrate that the
asymmetric coupled quantum wells perform as a two-photon absorption system in TPA
and ETPA experiments similar to the organic crystal structures of Lee and Goodson. The
optical characterization using femtosecond pump-probe spectroscopy will confirm that
the correlation time can be controlled using the barrier width, as predicted by the model.
The maor issue that has not been resolved is the large two-photon absorption
strength that is needed for low-photon-flux detection. In our design the absorption cross
section can be enhanced by the use of multiple coupled quantum wells; however thisis
limited to a factor of ~10? due to technical difficulties in maintaining a fixed superlattice
period (well-barrier thicknesses) for superlattices above a hundred periods.
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7 Theoretical Analysis of Imaging with Entangled States

The objectives of the QSP program as
outlined in the BAA are shown again (for
convenience) in Table 14. The first four
objectives involved the use of analysis to
certify that our approach to imaging
satisfies the first four criteria shown in
Table 14. Additionaly, we sought to
devise and carry out an experiment that
serves as a “proof of concept” for the
phenomenology we intended to exploit in
our sensor concept. The results of these
endeavors have been recounted in
previous sections. We have also made
comparisons of the resolution and signal
to noise ratio (SNR) that are available
from our proposed quantum sensor as
opposed to a classically based analog.
These results are also presented above. In
the present section, we discuss the
anaysis that has been carried out to
establish compliance (or non-compliance,
as the case may be) of our proposed
imaging sensor scheme.

7.1 Interaction with the Target
The fact that non-classical states do not

Table 14 QSP Program Objectives
From the BAA.

The photon's interaction with the target
doesn't cause the non-classical state to be
entirely lost.

The quantum sensor can resolve two targets
at a closer spacing than is possible with a
classical sensor.

The energy that travels between the quantum
sensor and the target propagates at the
single photon wavelength

The quantum sensor suffers a loss of

sensitivity and resolution that is no worse

than the loss suffered by a classical sensor
under the following conditions:

» The transmission medium between the
sensor and the target absorbs or
diffusely scatters photons.

» The target is in a daylight environment.

» The target scatters incident photons non-
uniformly over 4r steradians

Make a specific calculation of the resolution
improvement achieved with a 3 dB loss in the
transmission medium and a resulting 26 dB

signal to noise ratio.

An experiment whose goal is to provide
additional validation of some results
demonstrated analytically under the Base
effort, particularly if the relevant theoretical
base is underdeveloped. The goal of a

proposed experiment may be to determine
results beyond the scope of the Base effort.

become completely classica upon
interaction with a target has been verified
both theoretically and experimentally in many cal culations and experiments carried out at
UMBC and other institutions. This point has thus been well established. It isalso shown
in the calculations performed under this contract that are shown in Appendix A. In the
simplest case non-classical states are preserved if the interaction with the target is
lossless. In the case of oss, especially large loss, the complete state that scatters from the
target may, in fact, be classical; however, by post-selection, i.e. by judicious choice of
detection, a non-classical state may be detected. The post-selected state can produce the
same results as the non-classical state in the lossless case, but at a reduced detection rate.

7.2 Resolution and Energy Propagation

The program undertaken was to study ghost imaging with entangled photons. A number
of theoretical and experimental studies of two-photon ghost imaging had been done at
UMBC. These studies had focused on studying imaging and interferometry in various
configurations to test and expand the underlying theory descriptive of various situations
in a laboratory setting. They concentrated on improving visibility and counting rates.
The questions of whether ghost imaging could be used in sensor technology over long
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distances and with large losses had not been explored prior to the advent of the QSP
program.

On the QSP program, we began our study by looking at the resolution using the
Rayleigh criterion. This criterion is simple and useful since it was assumed that the
targets were of approximately equal brightness. Furthermore, we examined cases of
imaging beyond simply distinguishing two targets. We examined the resolution of non-
degenerate spontaneous parameteric down-conversion.”’  This was stimulated by the
guestion of whether the use of a long wavelength photon to illuminate the target while
retaining a short wavelength photon as a reference would yield imaging as though the
target was illuminated by the short wavelength photon. It was shown that for sensors this
was not the case. It was shown that the resolution was determined by the wavelength of
the light that illuminated the target. Thisanalysisis presented in detail in Appendix B.

The question posed by the third objective listed in Table 14 was interpreted as asking
whether entangled photons behaved as single photons. It was well-known that the
propagation of each photon was determined by Maxwell’s equations. However,
entangled states are more strongly correlated than classical states and can provide effects
that are not possible with classically correlated states. For two-photon ghost imaging
entangled states have visibility much greater than can be obtained with classical states.

We were led to examine states with more entangled photons. Starting from our
previous work on ghost imaging with three photons,® we have examined resolution
issues for ideal cases. This work will be summarized here and is shown in greater detall
in Appendix C. One case we examined was that in which one photon is sent to the target
while two photons are retained in the laboratory. Scattered photons are collected and
three photon coincidences are measured. The detection measurements are single photon
detections. We have found that for the case in which all three photons have different
wavelengths there is no improvement in the imaging. When the two retained photons are
degenerate (and measured jointly by a two-photon absorption material), that is, they have
the same wavelength, and the Airy disk has a radius half of what it would have with a
single photon of the same wavelength as each of the retained photons. In this case no
improvement in resolution was found, however.

In the case in which two photons illuminated the target and one was retained in the
laboratory, more promising results appeared with respect to achievable resolution.
These were generalized to the multi-photon case.® We analyzed the spatia resolution
improvement using three-photon imaging process beyond the Rayleigh diffraction limit.
Our analysis showed that with the entangled state|2,1), where one photon is non-

degenerate (1,) while the other two photons are degenerate (1,), the ability to resolve two
point sources in the object plane can be improved by a factor of two by sending two
degenerate photons to the target while keeping the non-degenerate and imaging lens in
the lab. Referring Figure 48 below, we showed that an image was formed if the Gaussian
thin lens formula

11 1

=—+
f oz, d+d'(4/24)

1

(32)

held. The minimum distance was found to be
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a__ =1.22£(d1+id'J z1.21M (33
24, 2R
where d,’ >>d;.

The scanning detector D, may be replaced by a CCD detector and the detector D; isa
two-photon bucket detector. A central assumption of this calculation was that the
degenerate photons illuminate the same area of the object. This would not be a problem
if we only wish to distinguish two large objects, but does present a problem for imaging.
The illuminated area must be small on the scale over which the target reflectivity changes
appreciably.>

(a) Ll D (b)

|2, ].- ilr|- N, 1

e cc | C.C.

'Sy b i

Figure 48 Schematic of quantum imaging with entangled photonsin state (@) and (b) .
The distance from the crystal output surface to the object is , isthe distance from the
object to the two-photon detector , isthe distance from the crystal output surface to the

imaging lenswith focal length f . z, isthe length from the imaging lens to the single-

photon detector D, , which scans the coming signal on its transverse plane. “C.C.”
represents the joi nt-detection measurement.

We generalized this scheme to the entangled state | N, 1) and showed that a factor of N

can be achieved for the spatial resolution enhancement which cannot be obtained in
classical optics. Thisconclusion is borne out in the following expressions.

1 1 1

+
fz, d+d(4/NA)

1

, (34)
A A ) (A, N)d

a =122721d +-—2d' [~122 21
min 2RL N4, J 2R

Note that this expression is qualitatively similar to what one would expect for the
Rayleigh criteria, however, the wavelength A, is divided by N, leading to proportionately
improved resolution.

We concluded that to realize such an imaging system with an N-photon bucket
detector, a number of conditions should be satisfied. First of all, the N degenerate
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photons should be delivered to the same point on the target. Secondly, the use of the
bucket detector requires that all N degenerate photons scattered be detected in a single
temporal counting window. We also pointed out that the system is very sensitive to the
levels of optical path loss that will typically be present in a standoff imaging system.
Although the loss of the vast preponderance of degenerate photons would not affect the
quality of the image, it does have an effect on the counting rate, or equivalently, the
exposure time. While not an explicit figure of merit in the go/no-go criteria for the
program, the time required to form an image is important for a tactical imaging system
and can certainly spell the difference between the viability and non-viability of such a
system.

To overcome the issue of loss mentioned above, we were motivated to study the optical
properties of other three-photon states entangled in time-energy and space. It is well
known that for N-photon states with N > 3, there are many different classes of entangled
states. In tripartite systems two classes of genuine tripartite entanglement have been
discovered, namely, the Greenberger-Horne-Zeilinger (GHZ) class and the W class. The
GHZ-like entangled state |1L1,1) and the W-like state |2,1) were studied during the

course of the QSP Program.® As expected the GHZ-like state becomes a randomly
mixed state if one photon is lost while the W-like state retains some two-photon
entanglement if one of the degenerate photonsis|ost.

7.3 Impact of Transmission Impairments
Broadly speaking the transmission impairments cited in Table 14 above fall into two
categories, noise processes and losses. The noise processes would include such things as
background counts from external sources such as the sun and dark counts in one or more
of the detectors. These processes produce counts in the detectors occurring at random
times with respect to the counts produced by the entangled photons themselves. Our
prospective imaging system produces counts by measuring correlations between
entangled photons produced at the source and incident on detectors that are spatially
separated from one another. The arrival times of the entangled photons on the detectors
will have a well-defined temporal relationship that will enable them to be distinguished
from detector responses arising from noise processes which do not have such a precise
relationship. Therefore, one may say that, not only is it expected that the performance of
an imaging system based on entangled states is not degraded with respect to a classical
imaging system; the resiliency of the system in the face of noise is expected to improve
with respect to that which can be expected from a more conventional imaging system.
The trade one must make as the frequency of noise counts becomes higher and higher
compared to the frequency of signal countsis that the timing that defines correlation must
become more and more precise, which adds complexity to the system. Unfortunately,
resiliency in the face of large optical path losses appears to be rather less encouraging.
Large photon losses appear, in fact, to be fatal to the use of entangled states at the
photon level. While the correlation measurements are effective in eliminating noise and
the losses do not affect the results of the imaging, they do affect the counting rate in such
away as to make the required time to obtain an image unacceptably long. To see this,
consider the fact that in the case of GHZ states discussed previously, we know that one
must propagate N photons to a target, and, ultimately, to a detector in order to recognize
an N-fold gain in resolution. Whatever the various sources of loss may be, we can expect
that, in a standoff imaging system, the probability of detection Pge, Of any one photon
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given its launch from the source will be of order 10°. Furthermore, the fact that the
entangled photons, once launched, propagate independently to the target and detector

suggests that the probability that all N of them will reach the detector is Pjy =107°N .

Now, if N = 2 (that is a twofold resolution increase...a total of three entangled photons
are created of which two are propagated to the target and one is retained locally), we
need to launch 10%° entangled photon “triplets’ per second in order to collect one

“triplet” at the detectors per second. At f = 200THz (E poron =133x10721J ) this

amounts to a total source power of approximately 40 W, if entangled triplets are
generated with unit efficiency. Of course the efficiency will be much much less than
unity in practice. For N = 3 we would need about 530 GW of power so we can see that
the scaling with loss is prohibitive for expected values of sensor standoff loss and values
of N going up from N = 2 which are of interest to the QSP program.

As mentioned above, whereas a loss of a single photon from a GHZ states means a
loss of entanglement so that no signal may be realized from the detection of the
remaining photons, some entanglement is maintained with W-states. However, we have
concluded that, despite their increased tolerance to loss compared to their GHZ
counterparts, W-states nonetheless suffer from the difficulty that the total probability for
detection of a group of photons scales exponentially with the number of photons in that
group. In the case where we detect only a subset (N photons) of our original group (M
photons), we can aso derive some advantage from the fact that any combination of our
original M photons taken N at a time will generate a correlation. However, as long as M
and N are relatively small, this gain will pale in comparison to the substantial losses
added with each additional required photon in a practical standoff sensor system as
shown above.

One possible way around this problem was to examine the case in which the target
was illuminated by intense beams that were entangled with a single reference photon that
acted as atrigger for the correlation measurement. In this case, the single photon would
be retained near the source and so would not be subject to loss. There were two
guestions to be answered here. First, as discussed above, if we send out a very large
number (M) of photons and may detect correlations between any small combination (N in
number) of them, we would expect our detection rate to go up. Secondly, and perhaps
more obviously, the notion of an entangled beam implies that we will be able to generate
more photons per unit time than would be the case with GHZ or W-states. The question
is how much greater? We presented a preliminary work modeling so-called entangled
beams in a previous report and a more complete version of this analysis is attached (in
Appendix D) to this final report. With respect to the second question, we examined the
model of one particular scheme for generating entangled beams in detail for its temporal
correlations. We estimate that under ideal conditions, we can only get a generation

frequency of about 5x10°/s-cm?. Consequently, in the high loss environment

envisioned for the quantum sensor this scheme will not work. Currently, there is
experimental work being carried out at UMBC on schemes in which much higher fluxes
of up-converted photons may be generated. However, because of the intensity of the up-
converted beam, a different detection scheme is required. With respect to the first
guestion, we have determined that the nature of the entanglement in beams is rather
similar to that in the GHZ states, for example, so that entangled states are generated (and
must be detected) in groups of N. This means that it is not possible to drive up the
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“combinatoric” gain to very high levels via the use of entangled beams (that is, by
detecting any combination of N photons from a very large number M of launched
photons). However, it is the case that one can generate these groups of entangled
photons at significantly greater rates. That said, the scaling of the power requirements
with N quickly derived above indicates that one will not reach the required flux level asN
approaches 10 by increasing power since the launched power must increase by afactor of
1/Py4e (a big number in standoff detection systems) each time a photon is added to the

size of the entangled group in order to maintain a given rate of detection.

Therefore we have concluded that while we have shown states and conditions for
which the sought after ten-fold increase in resolution appears to be possible in principle,
these states and conditions give performance that is significantly degraded with respect to
a conventional imaging system with path loss that will be typical of a standoff imaging
system. Conversely, while we found that loss could be tolerated for GHZ states where
one photon was propagated to the target and N were kept back, it was determined that no
advantage in resolution could be gained under this condition. Finaly, while W-states
offer an advantage insofar as the entanglement of the group is not completely lost with
the loss of one entangled photon, ultimately the power requirements and loss tolerance
for a given level of N is nearly identical to that of GHZ states. So, while states and
conditions have been found that satisfy each of the requirements at various times and
under various conditions, no one set of states and conditions satisfies the requirements
simultaneously, which is of course the real requirement of the program.
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8 Experimental Study on Entangled Triphoton Beams

Entangled multi-particle states of n > 3 have attracted a great deal of interest because of
their roles in probing the foundations of quantum theory™®*®? and their potential
applications in quantum information processing.®*** In the past decades, experimental
efforts in the realization of GHZ® and other multi-photon states®™ have led the study of
multi-particle (n > 3) entanglement to a new stage.

Beyond the multi-photon state at low light levels, the research presently reported
studies entangled multi-photon beams. The entanglement is no longer restricted to
single-photons but is achievable between high intensity beams. The objective of this
part of our QSP research (undertaken in parallel with theoretical efforts at UMBC) is
aimed at the generation of entangled multi-photon beams and the study of their temporal
and spatial correlation for possible quantum sensor applications.

An experimental realizable true triphoton EPR state was proposed by Keller, et a
Keller, et al., calculated a three-photon state via optical nonlinear interaction. In an
optical medium, which has significant second-order nonlinear susceptibility, ;((2), alaser
beam, namely the pump, produces two pairs of si%nal-idler photons in the process of
spontaneous parametric down-conversion (SPDC).™ By up-converting the two idlers
from two individual signal-idler pairs, the up-converted photon along with the remaining
two signal photons form an entangled tri-photon EPR state. To achieve both SPDC and
up-conversion, two sets of phase matching conditions must be satisfied in the nonlinear
interaction simultaneoudly:

|.67

ky +ky =k,
R2+IZ2' - lzp (35)
lzl' +l22' 2123

where the subscript p stands for the pump, 1 (signal) and 1' (idler), 2 (signal) and 2'
(idler) denote the signal-idler pairs of 1 and 2, and 3 denotes the up-converted photon.
Achieving the three phase-matching conditions simultaneously within a nonlinear
material has been a major challenge in crafting an experimental redlization. It is the use
of a hexagonally poled 2-D photonic crystal of quasi-phase-matching® that has made it
possible to achieve both SPDC and up-conversion and to generate the reported triphoton
EPR state.

To analyze the triphoton state, we start with the Hamiltonian of the time dependent
interaction

H, :%Idrl(z)(r)[El(;)El(—)El(,—) + E|(o+)Eg_)E£’_) + Eg‘)El(f)Eg) +H.C., (36)
v
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where V is the interaction volume and ;((2)(F) characterizes the spatial modulation of the

second-order nonlinear susceptibility. The entangled triphoton state can be calculated
from the third-order perturbation theory,

)=y Y (2w, @1~ @, - ag (2K, -G -k K, ~ks i &) &}
k Ky K

(37)

where we have approximated the pump field as CW, classical, and non-depleted, while
treating the signal, idler and up-converted fields quantum mechanically with multiple

modes. The constant vector, G , arising from the 2-D periodically modulated »?(F),

makes the quasi-phase-matching possible.® The wave vector &function in Eq. (37)
includes two sets of idealized quasi phase-matching:

Ep—El—Izll_él’O:O
p—kz—kz'—GLo:O
3—ky —ky =Gy =0

o)

(38)

where éLo and éO,l are the reciprocal-vectors of the 2-D hexagonally poled photonic
crystal as shown in Figure VII1.1(b). The frequency o-function, 5(2a)p —@—Ty —w3) is

the result of the time integral in the perturbation which has been taken from — .
Examining Eq. (37), the non-factorizable spectral function of the state ties photons 1, 2,
and 3 together as atypical EPR state. In Eq. (37), the energy and momentum of neither
photon is determined. But, if one of them is measured with a certain value, the sum of
the other two is completely determined, and vice versa.

. . ‘E;o o ] .
X
(a) (b)

Figure 49 (@) The domain structure of a hexagonally poled lithium tantalate (HexPLT)
after a dight etch in acid. (b) The corresponding reciprocal-vector space which has the
six-fold symmetry property but with rotation by 90°.
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The 2-D ;((2) photonic crystal used in the experiment is a hexagonally poled LiTaOs
(HexPLT wafer of 15mm x15mmx0.5mm." Figure 49(a) shows a schematic picture of

its domain structure. The nearly circularly inverted domain (with — ;((2)) distributesin a
+ Z(z) background periodically with a =0.95um. This specific design realizes the two
sets of quasi-phase-matching in Eg. (35) simultaneously. The phase-matching
kp —ky2 —ky» —Gyo =0 for SPDCisin the Gy direction. The other phase-matching

ks —ky —K» —Gg1 = 0 for up-conversion isin the G, direction. Reciprocal vectors Gy

and Go,l arise from the hexagonal modulation of the second-order susceptibility. Fig.

49(b) illustrates schematically the reciprocal-vectors of the hexagonally poled photonic
crystal. Due to the six-fold symmetry in the reciprocal vector space, the depicted élo

and éO,l have the same vector magnitude and the same Fourier component coefficients.
Besides achieving phase matching, another big advantage for using a HexPLT crystal is

the ability of utilizing dss, the largest component of the ;((2) tensor for LiTaOs. This

makes the quasi-phase-matched nonlinear interaction occur with very high efficiency.
For example, by using a few hundred milliwatts of pump power, gains may be achieved
in the range from 14 to 16 and the spontaneous process can enter the stimulated regime.
Due to the use of ds3, the signal-idler pair as well as the up-converted fields and the pump
are al polarized along the optical axis of the crystal.

Achieving the energy-momentum o-functions in Eq.(37) isonly half of the story for
the study of quantum entanglement. To complete the story, we must examine the space-
time EPR correction function.”" Experimentally, we have successfully measured the
third-order temporal correlation function of the three-photon system and observed a
typical EPR correlation intime. The third-order correlation function is given by

6oy, ra,75) = (w B EDESESES BNy
2
~(0[EDts23)E (tz,22)E D tr, 21 ) )

= |\P(T1,T2,T312

(39)

Here, W(z;,7,,73), the probability amplitude of annihilating photon 1, photon 2, and
photon 3, respectively, at (t1, z1), (t2, z2) and (t3, z3), is named as the effective three-
photon wave function, or triphoton. In Eq. (39) 7; =t; —z; /c ] =1, 2, 3 witht; asthe

registration time of the j™ photo detector and z; as the longitudinal coordinate of the i
photo-detector along the j" optical path. The calculation of W(ry,7,,73) is

straightforward, namely

ey 72.75) = (O ESE )
= lIloj‘ da)ld C{)zda)35(20)p — — Wy — a)3)f (kl' k2 y k3)eXp(i C()]_Z'l)exp(i a)2T2)eXp(i 0)32'3)
(40)
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where f(kq,k,,k3) formally denotes the realistic longitudinal phase-matching function in
SPDC and up-conversion. To complete the integral, we take frequency de-tunings v, as
variables, where o, =@y +v,, (Mm=123) and a)r?1 Is the corresponding central
frequency of w,,, based on first-order dispersion; and use the frequency &-function, i.e.,

v3 =—(v, +v,), to reduce the integral from 3-D to 2-D. The triphoton is then simplified
as

W(r31.732) = Wo exp[— i(a)f Ty + @373 )J
x Id vidv, expl=i(vyray +ivora, )]sinc(lee’llI ;VlDSZI jsinc(vlzll'l jsinc(v2 Dzzz'| j

(41)

where 7 =7 — 7, and Dy = Ly - LUy With up, (un) the group-velocity of the m™ (n®)
field.

Now, we introduce variables v, and v_ with v, =(v; +v,)/2, v_=(v;-v,) and
apply Ds1' = D32 EQ. (41) can then be further smplified as

+Av, /2 . —iv (T31+T32) +Av_ /2 -
¥(rgy,73) J. dv, sinc(v, D31vl)exp{ + } J.d v_expl-iv_(ry —73)]
-Av, /2 -Av_ /2

(42)

where functions sinc(11D11/2) and sinc(1:D2/2) have been used to determine the upper
and the lower limits of the integral. Taking into account realistic experimental
parameters, Eq. (42) can be easily integrated numerically. In the extreme case, when we
take theintegral limits of v, and v. infinite, the integral in Eq. (42) yields

W(ra1,73) o [ [(Tag +Ta2—Dayl (T —Tap) (43)
whereTI(x,a) = 1 for 0< x <a and vanishes otherwise. Comparing the width D3yl of the

IT function along 73y +73 and the ofunction in 73 —73,, we would expect a
nonsymmetrical tri-photon wave function.
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Figure 50 A numerical simulation of the third-order correlation function, G(3)(fé1, i;z)

Taking into consideration the limited response time of the photon counting detectors
and their associated electronics, the measured G(S)(E,l, typ), for fixed z1, zo and zs, isthus
determined by

GI(fay, T = [ dltgyltag|¥ (7, 732 ) (44)
t

c

where 13, and t;, are the average times within  t3; +t, and t3, £t.. We have assumed

all three photo-detectors and their associated el ectronics have the same limited response
time, or uncertainty, t.. The sub-index t. of the integral denotes a time average in the
neighborhood of t3; +t, and ty, +t.. A numerical simulation of G(3)(E1,t~32) is
provided in Figure 50. The simulation is based on Eq. (42) and EQ. (44) with true
experimental parameters.

The experimental setup is illustrated in Figure 51. The pump is a ~15 nanosecond
pulsed Q-switched Nd:Y AG laser with tunable repetition rate from afew kHz to 200 kHz.
A lens with focal length f = 15cm focuses the pump beam into the thin LiTaO; crystal
(15mm x15mmx 0.5mm). When the e-polarized pump beam of A =532nm is incident

along the Gl,O direction and the temperature of the HexPLT crystal is set at 178°C, the

signal, which is centered at 4 =873nm, and the idler at 4 =1362nm are collinearly
generated along with the pump; while the up-converted beam, which is centered at
A =68Inm, emits 5° aside from the pump, is governed by the quasi-phase-matching
conditions of Equation (38). To block the remaining pump beam, mirrors (HR532) and
band blocking glass filters (GF) were applied. A 50/50 beam splitter (BS) was used to
split the collinearly propagated two signals while the two idlers were up-converted to
A =68Inm.
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Figure 51 Schematic experimental setup for three-beam temporal correlation
measurement.

The separated two signals (A =873nm) were then detected by photon counting
detectors D; and D, respectively, while the up-converted photon (A = 681nm) triggers
photon counting detector D;. Bandpass spectral filters (BPF) are used for passing the
expected wavelengths to the photo-detectors. The registration time differences of
ty; =t;3—t; and t;, =t3—t, for each three-fold joint photo-detection event are

recorded. The datais anayzed and reported as a 3-D histogram: the number of three-fold
joint photo-detection events against ty; and ts,, which corresponds to G®)(t, &, ) with

fixed values of z;, z, and zs.
The experiment was implemented in the high-gain stimulated region. The three
entangled beams are observable easily by the human eye, which indicates a Fock state

with occupation number n >> 1. The correlation function G® was measured in the
photon counting regime and neutral density filters were used to attenuate each generated
beam down to single photon level. Although the use of neutral density filters may
destroy EPR correlation of a multi-photon source in the spontaneous regime, we have
found that in the stimulated regime, the 5~function-like spectrum of the state, which gives
rise to the EPR correlation, remains unchanged. The physics is rather smple. In the
spontaneous regime, each generated tri-photon may be characterized with a different
initial phase, i.e.,, randomly distributed in phase space, which corresponds to random
creation times of the triphoton. If one selects subsystems from different tri-photons for a
joint detection event, the time correlation will belost. In the stimulated regime, however,
the modes are coherently excited. Roughly speaking, all generated tri-photons are in the
same state, i.e., condensed into one point in phase space. There is ho chance to pick up
“wrong" subsystems for a joint detection event. The theory has been experimentally
verified recently in our laboratory.””  The experimental observation, as well as the
theory, will be published separately.
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Figure 53 (a) Projection of G(®)(f;, T;,) onto axists. (b) Overlook a G®)(&;, T,).

Figure 52 shows a typical measured temporal correlation function of G®)(f, %, ).
The tri-photon is located within a very narrow time window as shown. To ensure that
each measurement of the field occurs at the single-photon level, we adjusted the ND
filters until the single photon counting rates reach ~30 counts per second
(30/13000 ~ 2.3x10™° per pulse). Figure 53(a) shows the projection of G(S)(fél,fgz)
onto axists; (or t3;). The width of the projection gives ~1ns, which is less than that of the

measured width of the subsystems as well as the pump pulse (~15ns). The most
interesting observation of the experiment is illustrated in Figure 53(b). The striking
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feature of this measurement is the time-squeezing along (t3; - ts2), which is in good
agreement with our numerical ssimulation of Figure 50, a convincing observation of the
tri-photon wave packet.

The experimental setup for the spatial correlation measurement looks similar to that
of the temporal correlation, however, the measurement is directly related to the spatial
resolution of three-beam ghost imaging.  Figure 54 is a schematic of one of the
experimental setups. In fact, this setup is a ghost imaging experiment. As a result, we
refer to this scheme as “ghost imaging of 2 +1 beams.” A double-dit, which plays the
role of the object-target, is inserted in the entangled beams 1 and 2 with degenerate
wavelengths 4 =873nm . The point photo detector D, is may be scanned transversely, as
indicated by the double arrowed line. The measurement of D, is in the far-field Fourier
transverse plane. A sum-frequency (second harmonic for degenerate wavelength)
device is applied to up-convert the wavelength to A = 436.5nm. The use of a nonlinear
sum-frequency serves for the purpose of ensuring that the entangled two beams of
A =873nm come from the same point of the target. A photo-detection event of D; at
A =436.5nm indicates the simultaneous measurement of two A =873nm beams. A
coincidence measurement between D; and D, effectively achieves a three-beam joint
detection. Our theoretical study has indicated that the spatial resolution of the ghost
imaging will be enhanced by a factor of two, beyond the classical limit (see Section V1 of
this report). Corresponding to the theoretical prediction, in this measurement we expect
to observe a far-field double-dlit interference-diffraction pattern with half pattern width
and twice interference modulation. According to Fourier optics, this result means an
enhanced twice spatial resolution on the ghost imaging plane. Unfortunately, we have
not been able to obtain publishable measurement data before the submission of this
report. The experimental study will continue until achieving the goal of this
investigation.
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f=15cm  HexPLT 681N

Y

<>

Ghost imaging
lens

- =
Two-channel

f—=7 N\ timing analyzer

Join-detection counting rate
vs. transverse position of D2.

532 pulse laser H\

Figure 54 Schematic experimental setup of three-beam ghost imaging. The observed
ghost interference pattern indicates that the ghost image has twice spatial resolution
comparing with a classical image of the target (double-dlit).
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9 Suggestions for Further Work

In principle, the resolution anal%/sis discussed above should be extended to a quantum
treatment of hypothesis testing.” This could be performed for the case of an N = 11
photon state, for instance, given proper normalization of the spatial part of the wave
function, but in the case of entangled beams, the problem may be intractable. However,
it would be important to at least compare error probability versus separation between
point targets relative to the Rayleigh limit, and resolution versus SNR using Helmstrom’s
guantum formalism to our treatment in which we incorporated the quantum mechanically
derived point spread functions into the classical model for the binary hypothesis test.
This would test the validity of our results in terms of the comparison of SNR required for
a given resolution between the entangled photon and baseline sources.

There are several aspects of the SNR calculations that need further study. One isthe
validity of a Fano factor to represent sub-Poissonian statistics in the case of entangled
photons or beams. We used this factor in our initial studies of the SNR comparison to our
original baseline, but abandoned it upon establishing the new baseline and employing the
intensity interferometer approach to SNR. If this factor isvalid, then it could establish an
additional advantage to entangled photon ghost imaging, assuming that such a source
yields an approximate number state.

Another area warranting further study is incorporating a factor in the SNR calculation
to represent the degradation in visibility as a function of the output beam brightness.
This would alow us to determine an upper limit to the useful power one could use for a
remote ghost imaging sensor.

Perhaps the most critical need for further work remains in the experimental area.
Now that NGC has established its quantum imaging setup with the detection of second
order correlation, it should (in collaboration with UMBC) continue to embark on ghost
imaging experiments. These first should be performed with two entangled beams, and
the predictions™? for the location of the image plane, as given by the thin lens equation,
and the resolution in terms of the ratio of the output wavelengths, should be tested.
Subsequently, once a suitable source is identified, the experiments should be extended to
three entangled beams.  This would enable us to demonstrate the ability to obtain
resolution enhancement in ghost imaging. The most important test would be a
measurement of resolution for a diffusely reflecting object. If resolution enhancement is
still observed it would show that the use of entangled beams offers some degree of
immunity to the loss of a portion of the entangled photons. Once such measurements are
performed on alab bench we would return to the original notion of using our atmospheric
optical path to perform ghost imaging with a remote target in free space, subject to a
large degree of turbulence. This would provide the most convincing preliminary
evidence that quantum states could provide an advantage for an imaging sensor in a
militarily relevant environment. The generation of ghost images with high flux beams of
entangled photons as well as the realization of ghost imaging with tri-photons (and
resultant expected enhanced resolution) are both areas where further study is warranted.

Finally, the development of sources (whether based on hexagonally poled lithium
tantalate as developed at UMBC or upon aperiodic gratings as conceived at NGC or on
some other technology) will clearly be central to progress in the development of sensors
based on entangled states. UMBC has also provided a prospective coupled quantum well
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structure whose multi-photon absorption dynamics may be further studied
experimentally.
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List of Acronyms

AllnAs. Aluminum Indium Arsenide (alll-V compound semiconductor)

AlSb: Aluminum Antimonide (alll-V compound semiconductor)

APD: Avaanche Photo Diode

AR: Anti-Reflection

ARL: Army Research Laboratory

BAA: Broad Agency Announcement

BD: Bucket Detector

BPF. Band Pass Filter

CAR: Coincidence to Accidental Ratio

CM: Cold Mirror

CW: Continuous Wave (as opposed to pulsed)

DARPA: Defense Advanced Research Projects Agency

EPR: Einstein, Podolsky and Rosen

ETPA: Entangled Two-Photon Absorption

FFT: Fast Fourier Transform

FPA: Focal Plane Array (an optical detector)

GaAlAs. Gallium Aluminum Arsenide (alll-V compound semiconductor)
GaAs: Gallium Arsenide (alll-V compound semiconductor)

GalnAs. Gallium Indium Arsenide (alll-V compound semiconductor)
GalnAsP: Gallium Indium Arsenide Phosphide (alll-V compound semiconductor)
GHZ: Greenberger-Horne-Zeilinger (aclass of entangled states)

GLAD: General Laser Analysis and Design (software package)

GTLE: Gaussian Thin Lens Equation

HexPLT: Hexagonally Poled Lithium Tantalate (LiTaOs...anon-linear crystal)
InP: Indium Phosphide (alll-V compound semiconductor)

IR&D: Internal Research and Development

KTP: Potassium Titanyl Phosphate (a non-linear crystal)

MAP: Maximum a priori Probability

MBE: Molecular Beam Epitaxy

MCT: Mercury Cadmium Telluride (HgCdTe, an infrared detector material)
MTF. Modulation Transfer Function

ND: Neutral Density (describes an element whose loss is invariant with wavelength)
NEC: Noise Equivalent Counts

NGC: Northrop Grumman Corporation

NGES: Northrop Grumman Electronic Systems (a sector of NGC)

Nd:YAG: Neodymium doped Y ttrium Aluminum Garnet Crystal (alaser gain medium)
NLO: Non-Linear Optical

NOON: A class of entangled states (|N,0)(0,N|)

ONB: Ortho-Normal Basis

OPG: Optica Parametric Generation

POVM: Positive Operator Valued Measures

PPLN: Periodically Poled Lithium Niobate (LiNbO3)
PSF: Point Spread Function

QPM: Quasi-Phase Matched
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QSP: Quantum Sensors Program

SFG: Sum Frequency Generation

SHG: Second Harmonic Generation

Si: Silicon

SNR: Signal to Noise Ratio

SPDC: Spontaneous Parametric Down-Conversion
SPIE: Society of Photo-Optical Instrumentation Engineers
STO: Strategic Technology Office

THz: Terahertz (10% cycles per second)

TPA: Two-Photon Absorption

UMBC: University of Maryland, Baltimore County
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Appendix A Effect of Scattering on Ghost Imaging

We briefly discuss ghost imaging to provide a concrete model of our general discussion.
In Figure 55 we illustrate the essential features of ghost imaging. The source S emits
pairs of entangled photons, one photon is detected in a focal plane array (FPA) and its
twin is detected by the bucket detector BD after it scatters off the object O. In Figure 55,
we have shown two pairs. for the first pair, one photon is detected at A and its twin a
scatters at «, for the second pair, one photon is detected at B and its twin b scatters at £.
The detection in the FPA determines the transverse wave vector of the photon within the
limits set by diffraction. If the there is a coincidence with the firing of BD and A, we
know that the twin has scattered from «. Recall that timing discrimination is such that
only one pair at atime can be detected. If the twin is not detected there is no coincidence.
Similarly for B and b. Now suppose that a pair A-a is emitted and that between S and O
the photon a is scattered, for example by fluctuations in the index of refraction, so that it
scatters off of £ and is detected in BD. In this case when A fires we get an error although
the entanglement has not necessarily been destroyed. Note that if there is scattering
between O and BD no error is introduced because the detector BD does not discriminate
between pairs. We now want to give a general model for this type of process.

s 0

c/i\_ b P

Qe— |
B a

BD

Figure 55 Schematic of ghost imaging system for modeling of scattering effects on
entangled photons.

A pure state of a bipartite system, a system composed of two subsystems, can
aways be written in the form

|‘P>:ZC1‘¢1>‘%> (45)
J
where {J¢j>,j:1...}and ﬂ;(j>,j:],...} are orthonormal bases of states (ONB), and
Z| C; |?=1. The stateisseparable if only one ¢; isnon-vanishing, otherwise, the state is
i

entangled. The summation is symbolic and may be an integral. For example, the wave
function for a bi-photon produced by a monochromatic pump of angular frequency o,

may be written as
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|‘P> = Idw]d 2KC(ZU,/?)|ZU,/?>‘ZUP —w,—l?> (46)

where ﬂw,z?>,w >O}is a set of one photon states with angular frequency o , wave
2
number, k = é”/w—z— k% +i and normalization
c
<w,1¥|w',l?'> = (27[)35(0 - w')ﬁ(z? — E’).

Simple Model of Measurement
Now suppose that the subsystems are transformed separately so

%) [ = Ye,|41)
‘¢3>:U‘¢j> 755>:V‘Zj>

)
(47)

where U and V are unitary transformations, then |\¥’) is entangled and has the same
degree of entanglement as |\¥). This follows from the fact that unitary transformations
map ONB onto ONB. Suppose we want to obtain information about the set
{ X > C, # 0} (in ghost imaging, the second subsystem contains information of interest

about the object). To do this we make projective measurements of correlations between
the two subsystems. The set of projectionsis given by

{p, =la)al®|p)}pl} (48)

where {la)}and {)}are ONB for subsystem 1 and 2, respectively. If we make a
measurement then the probability of the outcome being («, f) is

P = (¥R, )= S1c, F(ala) sl ) (9
If theset {a)= ‘¢a'>}weget
p.o=lc, FI(BLZ) =le, FIBIV 2] (492)
therefore, we can obtain information about the scattering from the second system.
More generally, suppose that
@)=+, ]¢:)+]<.) (50)

where (¢

§a> = 0, then ameasurement with the outcome («, ) has probability
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p;ﬂ = ba paﬂ + naﬂ (51)
wherethe first termis the signal with p,, given by Eq. (49a) and the noiseterm is

2 2

<ﬂ|ZJ,> .

ary

n,= #ZJ C, F (52)

In summary, we can obtain information about the scattering of the second subsystem
by making a correlation measurement with the first subsystem. If we assume that we
know the state of the first subsystem perfectly, then we can project the scattered
subsystem onto a set of known states and determine the probability distributions p,,. In

the ghost imaging case this corresponds to measuring the intensity distribution of the
light scattered from the object, and the non-ideal case modeled by Eg. (50) corresponds

to the case that detection in the state |£,) occurs because the twin photon has been

scattered by atmospheric variation of the index of refraction. The formulation just given
in terms of projective measurements is not the most general formulation of the problem.
It is useful to give the more genera picture.

General Model of Measurement
The simple picture does not illustrate what really happens in laboratories in a clear way.
We need to take into account the fact that we are not interested in the entire wave
function. For example, in order to form an image using a light beam, we only detect part
of the light coming from the source because it is necessary that the object being imaged
absorb or scatter some of the incident light. From the point of view of the detection,
there is loss. Loss due to absorption simply reduces the counting rate since if one of the
subsystems is not detected there is no correlation measurement. The source of noise we
consider here occurs when scattering generates false correlations such as illustrated in
Eqg. (50).

To model the measurement process more exactly we consider the most general form
of measurement based on positive operator valued measures (POVM). In the simplest
case, aPOVM is aset of positive operators S={E_,=M'M_, a = 0,LK ,N} that satisfy

the condition

i E, = (53)

where | is the identity operator on the Hilbert space, H, of interest. We have used the
fact that any positive operator, E,, can be written as the product of another operator, M _,
and its Hermitian adjoint, M. For simplicity we label the measurements with discrete

indices. The standard projective measurements are a special case of this; however, the
more general case allows us to model experimentsin which, for example, one photon of a
two photon state is absorbed. If the state of a system in H is described by a density
matrix p ismeasured using the POVM (B.9), the probability of getting the result «is

p, =tr[E,p]. (54)
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Because E, is a positive operator, p, >0 (note that if p, = 0then we never get the
outcome ), and Eq. (48) ensures that the set { p,} isaprobability distribution. After the
measurement the state of the system is given by

M oM!
p—> p, = —L2e, (55)

o

A projective measurement corresponds to the case where the set S is composed of
orthogona projections, i.e. E, - P, where P,P,=5,,P,. For a POVM, the operators

E_, need not be orthogonal.
We will be interested in the case

E,=A ®B, (56)
where {A, } and {B, }are POVM that operate on subsystem one and two, respectively.

Now consider the system to be in the state Eq. (45) and a measurement using the POVM
S that gives the outcome «. Then

B, | ) - (57)

b = (WIE,[%) = Ycic, (6| A 8z,

We have absorbed the propagation from the source to the detector into the measurement
operators. Eg. (56) istoo general for most purposes so we will now specialize it keeping
in mind the application to ghost imaging. To this end, we shall assume that the
measurement outcome « projects onto a state such that

(¢

In the ghost imaging case this corresponds to a measurement in which when one pixel in
the focal plane array (FPA) is excited with a transverse momentum vector that is
determined within asmall uncertainty. If we assign an operator

Aa = Zaja
i

Aa|¢k>:51kaja- (58)

#,)(¢| 0<a, <1 (59)

N
for a¢=1..,N, then A,=1- ZAQ corresponds to no pixel being excited. The
a=1
summation over j in (59) allows for the fact that there may be some uncertainty in which
state excites the pixel, in the ideal case there will only be one term. In an experiment the
overlap in the transverse momenta corresponding different « is small. With assumption
(58), Eq. (57) becomes

81



pa = ZIC] |2 aja</¥] B
]

L) (60)

Now let us assume that
B, =Zt\;(j><;(j t"=Ba=1..,N
a (61)
Bo=1,-> B, =I,—NB
=1

where 1,is the identity operator on the Hilbert space of the second subsystem. To

understand the meaning of this last assumption, suppose we only measure subsystem two
and ignore subsystem one. Thenfor o =1,...,N , we get

<\P|I1®B|T>:Z|Cj i ‘<Zj‘t‘)(j>‘2- (62)
J
Comparing thisto (A.16)

(el ) (622)

pa :Zlcj |2 aja
]

we see that, because of our assumption about the a,, , information is lost if we do not
make the coincidence measurement.  This is particularly clear in the ideal case
a,, =,0,, where only one term appears in (A.16a). The assumption in Eq. (61) may be

thought of as modeling a bucket detector in the ghost imaging. Recall that the bucket
detector only tells us if light scattered from an object is detected but gives no details of
the image.

Finally, let us see how noise can occur in this picture. We now assume that

subsystem two undergoes the transformation in which ‘ ;(j>scatters into the correctly
correlated state with probability b,, into an incorrectly correlated state with probability

q, . and a state that is not detected | ¢, ),
‘Zj>_>\/b_it‘}(j>+5tr Zi>+ §jr>’ (63)
(in general b; may also depend onr).
In this case we can write
B, =ijt‘)(j><;(j‘tT+qu5tr ;(j><;(j‘5trT, a=1K ,N. (64)
J ]

In the ghost imaging case the second term in (A.19) may be thought of as scattering due
to index of refraction fluctuations in the path between the source-object-detector. Now a
measurement with outcome « occurs with probability
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p.=s,+n, a=1K, /6N
s, =xb, I, Fa,[(n[tz) - (65)

<ZJ‘5tr 11>‘2

na = erqr IC] |2 aja

In conclusion, we see that the correlation due to the entanglement appears as the signal
and will be detectable provided the noise is not too great. In this discussion, we have
only included noise generated due to scattering effects that may not necessarily degrade
the entanglement of the pairs detected. We aso wish to emphasize that losses,
characterized by B,, only affect the counting rate not the signal to noise ratio.
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Appendix B Imaging with Non-Degenerate Bi-Photons

We consider the ghost imaging systems shown in Figure 56. Figure 56 (Upper) is the one
of interest to us here. Figure 56 (Lower) is the original ghost imaging configuration. In
both cases a pump from a laser is incident on a crystal that produces entangled photon
pairs (bi-photons). One of the photons, called the signal photon, scatters from the object
and is detected by detector A. A point detector B located in the image plane detects the
second photon, called the idler photon. The signals from the two detectors go to a
coincidence counter. The point detector scans the image plane or can be an array of point
detectors. Detector A is called a bucket detector and collects all scattered light incident on
it. For the system of interest, the distances Ds and Ls will in general be of order 1-10 km.
The arm in which the imaging lens is placed differs in the two systems. In Figure 56
(Upper), abeam expander is used to produce a collimated beam that is aimed at the

Detector A

Object
Beam L,
Expander

Pump

Coincidence
Counter

Point
Detector B

Detector A
Object
Lens

Pump

: Coincidence
7 Counter

Point
Detector B

Figure 56 (Upper) Schematic of ghost imaging system analyzed here, (Lower)
Schematic of original ghost imaging system.

object. The bi-photon source, detectors, lens, beam expander, and coincident counter
will be located in the laboratory. The image plane is determined by a Gaussian lens
formula, Equation (83) (below) and the Airy disk depends on the idler wavelength,
Equation (89). However, the resolution of two points on the object depends on the signal
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wavelength, Equation (90); consequently, the system discussed here does not lead to
improved resolution over the classical case.

This Appendix is organized as follows: first we formulate the coincident counting
rate in terms of the fields at the detectors, then we compute these fields, finaly we
compute the minimum transverse distance on the target that can be resolved. We shall
discuss the system shown in Fig. 56 (Upper).

The coincident counting rate may be written as

1
C :?”thdtBS(tB,tA)jdZpAaBGAB (66)

where S is the coincident time window that vanishes unless 0 <tg-ta < T, aa iSthe area of
the bucket detector, og isthe area of the point detector,

G, =tr[EQEVENPE g, (67)

pis the quantum mechanical state of the electromagnetic field on the output face of the
crystal and, for j=A or B, E{" (Fj ,tj) is the positive frequency part of the electric field at
the point F, evaluated at time t,andE!” = (Ef*) )H , Where the superscript H denotes the

Hermitian adjoint. It is convenient to use electric fields with dimensions so that E™E is

a photon number flux. We will ignore the polarization of the photons but adding it inis

not difficult. The detailed expression for the fields at the detectors will be given below.
For the case in which the output of the crystal is a sequence of non-overlapping

biphotons, we can write G ,; = |N AB |2 in terms of the bi-photon amplitude
— HE®G®
N aB _<O‘EB E. ‘\P> (68)

Where |0) isthe vacuum state and |¥') is the bi-photon state vector.
We begin by computing the field at detector B,

Es” = Z\/LQZE:aB(IZ)ei“’tB | (69)

where c is the speed of light in the atmosphere, Vg is the quantization volume, and the
operator aB(IZ) destroys a photon with a wave vector k at point B, and @ =kc. We
shall omit the factor ,/c/2V, in what follows. It is easy to restore it a the end of the

calculation. In order to compute the bi-photon amplitude defined in Equation (68), it is
necessary to express the field in terms of the destruction operator at the surface of the
crystal. We write
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E = 9(R,0,ps,2, (K)o , (70)
k

where a; (IZ) is the destruction operator for an idler photon of wave number k at the
output surface of the crystal, g is the optical transfer function that can be computed using

classical optics, and
lan (E)’ a (IZ') =0 ,|Z'5mn : (71)

In writing out the transfer function, it is convenient to introduce coordinates r = ze, + p,
where the unit vector €, points along the path through the center of the optical system
and p is atwo dlmensonal vector perpendicular to the path. Using the thin lens
formula, one can show that

E“’—Zw(pa, j{jd pr(pL,k(Dil—%Dexp[( kpfj pLjP(ﬁ )}

1 : d. —
——explilkz, — at —— la. k], 72
where z, =d, + D,. The physics of Equation (72) may be understood by noting that the
term in square brackets expresses the scattering of a plane wave with wave number

=1k?—x?€, +i ~ke, +& incident on athin lens into a wave with transverse wave
number ko, /D, . The output wave then propagates to the detector. The remaining terms

in Equation (72) arise from the propagation of the plane wave created at the crystal
surface to the input face of the lens. Using a similar analysis, with the object described
by atransparency function, t(5), it can be shown that

E“)—ZW[/OA j[fdpa (pa U(ﬁa)exp(—i(k’i—jw:—z]'ﬁaﬂx

.iLeXp[i(st _a’tA)]W(K' P T(ds jas (lZ), (73)

i, f,

f? f,
where P = -D,+f, +

5 fy
output lenses of the beam expander. We assume that the lens aperture P, is the limiting
aperture function for the entire system.

2

j and f; and f, are the focal lengths of the input and
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Bi-photon Imaging
We are now in a position to compute the bi-photon amplitude. For the case of interest,
the system is constructed so that we may take

ES gk ‘”(,oj,t ) for j=A, B. (74)

Where e{” is slowly varying on the length and time scales, 1/K; and 1/43. Thisalows us

to make the several simplifying approximations. For the signal field in arm A of the
system, we take

@ =Q,+V,
- Q, +v, ) v
k=125+\/#+xféz=ES+(KS+—S+AKZJ§Z
c c

Q (75)
K, ===

c

vV, v 2
Ak, =—=—+——+.

c Q, 2K,

where we can drop the term 4k,. Frequency filtering ensures that v, /Q, is sufficiently

small so that terms containing it can be ignored. Similarly, spatial filtering ensures that
k. /K is aso sufficiently small to be ignored. In am B, we make the same

approximations where the subscript becomesi for idler. We can now write

N :_(Zﬁ%exp[.w 1 K2 Ot — Oty N
T
ksvki

where ga and gg are slowly varying functions determined from Equations (72) and (73).
Note that we must keep the v's in the time factor of the exponential expressions. It is
convenient to replace the summations by integrals in the standard fashion.

VQ 2
( - Id KSIdVS
dkSZ o, Q 1
do k K Cc
(77)

and similarly for theidler. Inasimilar fashion, going from discrete indices to continuous
indices, we have
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Yoo k) a(e,v.)

s?17s

¢ (78)
2. (5. v )l (71 v0)|= (2x f (R, —R1)o(v, —v2)

Theidler terms are treated similarly.
We take the smplest model for the bi-photon. A plane wave pump of angular
frequency @, and wave vector k €, propagates in crystal of length L, then it can be

shown that

(Ofa, (7, v, (%, v, | ¥) = ~i(22) 8@, ~, -0, -V, ~v, J5(&, +7, )gnc[AkéL]

= —i(22y8(v, +v,)5(%, + &, )sin c(vdTLj (79)
where yisadimensionless constant, D; = 1 1 and us (u;) isthe group velocity of the
S ui

signal (idler) photon inside the crystal. Thefilters are chosen sothat Q, +Q; =@, and
Q,n (Q,)+;n;(Q;)=ck,, wheren; isthe index of refraction for j=s and i. In this case
the temporal and the transverse terms factor and we have

N = [— i}/I dv.e™ ™ sinc(v, D, L/2)}/ (BasPs). (80)

To compute V, we first do the integrals over the x’s. Evaluating the integral over «;
using Equations (72) and (73) gives ; = —x, so that we may obtain

J.dZK_ P P—ds_iex —ilz:. ——+~L _ 1 ﬁ+_,iﬁ
V| Ks» KS Ki P s PL T Pa f2 _i}LSRS V| |PL T Pa f2 , RS
2 2 2
Rs :(dS —P)—i-ﬁdi :—f_l 1+f_22 + f_lzDs +ds +£di
2’5 f2 fl f2 ﬂ’s
(81)

where R is the optical path length from the lens to the object in the sense that ksRs is the
phase change that a plane wave would acquire in traveling from the lens to the object. If

the beam expander is not present, R, = D, +d +%di . Now, substituting Equation (81)

S

into the equation for V gives
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1 K, K, ﬁ 1, 1)) wses
V(Bup B):WW[PA'L—JV/(K)B,EJI dzpat(pa)ﬂ(pa,Ks{L—+f—lR—De Koot s o
¥ i 2 ''s

S S S

K, 1 1 (P B P A - ,
szpﬂﬂ(ﬂurKi(?‘?ﬁexp{“{ﬁ—f—“%ﬂ’pL}PL(PL)
s i S 2 i i

(82)

Using the imaging condition
g+ == 83
D, (83)

gives

L 1 K, K,
V(B Ps)=- w(pA,L—jw(/)B,EJX

S 1

5 0, f, Ps A} 1 f, 1)) ks
d2p P | K Pals PsAs K| = | feriKepnnral s 84
[d?p, L[ S(R F DA J}(pa)w(pa S(L iR B (84)

S S

Where P, () is the Fourier transform of P, (5). If the lens aperture is infinite then

P (£)~&(K) and V ~ t(ﬁB %%%} = t(%} so the magnification, m, depends on the
i 17N
ratio of the wavelengths.

In order to give some more insight into these results, we consider an unfolded
version of Figure 56 (Upper), which was developed by David Klyshko. In the Klyshko
picture (shown in Figure 57), the source is shown to emphasize that the ideal phase
matching condition corresponds to transverse wave number conservation which can be
represented as a ray passing through the system. The object distance has been weighted
with an effective index of refraction and we omit the beam expander. It isnow asimple
matter to use geometrical optics to obtain Equation (83) and the magnification

S D,

S0 - ﬂsRs/ﬂi -

To compute the counting rate, we need to sum over the surface of the bucket
detector assuming that each point of the surface detects the intensity of the light incident

onit
2
o /Ba fl IBB ﬂ’s -
PlK |£Lat_Fe’s . (85

L L2
[a%p.N (B ) =25 [ 4%,

Therefore, the coincident counting rate is
1 . ) 2
C= ?”thdtBS(tA,tB MdvS expliv, 7, Jsinc(v, D, L/2)1 X
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Figure 57 Klyshko picture of a ghost imaging system.

Resolution
To discuss the resolution we consider a target made up of two point scatterers, one
located at the origin and the other at the point & in the target plane,

t(5,) =t,0(p, )+ t,6(p, —4). (87)

From Equation (84), we have

Lo 1 K, K,
V(pA,pB)=Wt// P W Poig X

S 1

t,P, _Pe 2w +t,P | K, Ah Pt wl a,K, I | S (88)
Di ﬂ'i Rs f2 Di ﬂ’i Ls f2 Rs

From the first term in the square brackets of Equation (88), we see that the point spread
function is determined by the Fourier transform of the lens aperture function. For a
circular aperture, the radius of the Airy disk is given by

Qg = X—— (89)

where R, is the radius of the aperture and P_ (<) is negligible provided x, > 272/R,
x=1.22. Note that the radius of the Airy disk is proportional to the idler wavelength.
This is the standard result, as can be seen by taking R, >> D, in Equation (83) so that
D,=f and «, =x4/NA where NA=R /fis the numerical aperture of the lens.

Referring to Figure 57, we see that thisis the same result we would obtain from classical
optics.
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We now use the Rayleigh criterion to determine the resolution of two image points.

It should be noted that there are different, related, meanings of the Rayleigh criterion.

The one used here refers to the ability to resolve two point sources in the object plane.

The other is the minimum angle between plane waves faling on an aperture that can be

resolved and can be interpreted as resolving two point sources at infinity. The image of

the second term in Equation (88) is assumed to lie on the edge of the Airy disk of the first
term, so

amin = /15055 f2 Rs = XﬁkR

4D, f, R, f;

(90)

5"

We see that the resolution depends on the signal wavelength. In the type of system of

2
interest, Equation (81) gives R, = %DS. For typical parameters A, =1um, R .=10cm,
2

h:10, x =3 and Ds = 1 - 10 km, we get anin = 3 — 30 mm. The second meaning of the

1
Rayleigh criterion give the ratio amin/Rs as the smallest angle that can be resolved by the
lens and it is given by a numerical factor times A/R.. Finaly, let us rewrite Equation
(90) as

amin

Ay

| ~

&k: T (91)
D, f, D-ff

N

s
i

where we have used Equation (83) to obtain this last expression.

91



Appendix C Spatial Resolution Enhancement in Quantum
Imaging beyond the Diffraction Limit Using Entangled Photon-
Number State
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Spatial Resolution Enhancement in Quantum Imaging beyond the Diffraction Limit
Using Entangled Photon-Number State

Jianming Wen,* Morton H. Rubin, and Yanhua Shih
Physics Department, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
(Dated: October 13, 2008)

In this paper we study the resolution of images illuminated by sources composed of N + 1 photons
in which one non-degenerate photon is entangled with N degenerate photons. The N degenerate
photons illuminate an object and are collected by an N photon detector. The signal from the N
photon detector is measured in coincidence with the non-degenerate photon giving rise to a ghost
image. We discuss the case of three photons in various configurations and generalize to N+ 1. Using
the Rayleigh criterion, we find that the system may give an improvement in resolution by a factor
of N compared to using a classical source. For the case that the N-photon number detector is a
point detector, a coherent image is obtained. If the N-photon detector is a bucket detector, the
image is incoherent. The visibility of the image in both cases is 1. In the opposite case in which
the non-degenerate photon is scattered by the object, then, using an N-photon point detector may
redu! ce the Airy disk by a factor of N.

PACS numbers: 42.50.0v, 42.30.Kq, 42.50.5t, 07.07.1Df

I. INTRODUCTION

Diffraction puts a limit on the the resolution of optical devices. According to the Rayleigh eriterion [1, 2], the
ability to resolve two point sources is limited by the wavelength of the light. The Rayleigh or diffraction limit is not
an absolute limit and proposals to exceed it have been known for a long time [2]. Recently, new proposals to improve
resolution beyvond the Rayleigh limit have been made based on the use of entangled sources and new measurement
techniques. Improving the resolving power of optical systems beyond the diffraction limit not only is of interest to
the fundamental research, but also holds promise applications in remote gensing and quantum sensors.

Classical imaging can be thought of as a single photon process in the sense that the light detected is composed of
photons each of which illuminates the object, consequently, the image can be constructed one photon at time. What
we mean by referring to this as classical is that the source of the light may be described by a density matrix with a
positive P-function (3, 4]. In this sense the Rayleigh limit may be thought of as a single photon limit. Recall that ideal
imaging is a process in which there is a point-to-point mapping of the object to a unique image plane. Diffraction
causes each point of the object to be mapped onto a disk, the Airy dizk, in the image plane.

One of the new approaches to improving resolution is based on using non-classical light sources. Quantum ghost
imaging [5-10] is a process that uses two-photon entanglement. The unique features of this process are that entan-
glement allows only one photon to illuminate the object while the second photon does not. All the photons that
illuminates the object are detected in a single (bucket) detector that does not resolve the image. The point detectors
that detect the second photon must lie in a specific plane. This plane is called the image plane although there is
no image in that plane; the image is formed in the correlation measurement of entangled photons. The image is
constructed one pair at a time. The resolution of this system has recently been discussed [11, 12]. Losses in this
system affect the counting rate but not the quality of the image.

A second approach using non-classical source is based on entangled photon-number states [13], e.g., NOON state.
When the number of entangled photons exceeds two there are many possible imaging schemes that can be envisioned
and so the analysis of these cases is still being carried out. This interferometric approach achieves a sub-wavelength
spatial resolution by a factor IV and requires an N-photon absorption process. Another quantum source used to study
imaging is to generate squeezed states [14]. The image can be reconstructed through the homodyne detection [15].
However, both of these techniques are severely limited by the loss of photons.

A second class of approaches to improving resolution uses classical light sources. One method uses classical light
with measurements based on correlations similar to ghost imaging and the Hanbury-Brown and Twiss experiment
[16, 17]. This method has the advantage of being more robust with respect to losses [18, 19]. Another approach is to
build an interferometric lithography with use of classical coherent state [20, 21|, which has similar setup to the case
using entangled photon-number states.

* Electronic address: jianml@umbe.edu
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In this paper we will consider improving spatial resolution beyond the Rayleigh diffraction limit using quantum
imaging with an entangled photon-number state |1, N). In our imaging scheme by sending the N degenerate photons
to the object while keeping the non-degenerate photon and imaging lens in the laboratory, a factor of N improvement
can be achieved in spatial resolution enhancement compared to classical optics. The assumptions required for the
enhancement by a factor of N are that the V photons sent to the object scatter off the same point and are detected by
either an N-photon number detector or a bucket detector. This sub-Rayleizgh imaging resolution may have important
applications in such as improving sensitivities of classical sensors and remote sensing. We emphasize that it is the
quantum nature of the state that offers such sub-wavelength resolving power with high visibility. However, the system
is very sensitive to loss. While we give general resu! lts, our main concern will be with the case in which the object is
far from the source and the detectors and optics are close to the source. A different but related approach to the one
discuszed here is given in [22].

We organize the paper as follows. We will dizcuss our imaging scheme with entangled photon-number state |1,2)
in some detail in Sec. II. In previous work [23, 24] we have shown that imaging occurs in correlation measurement, as
in the ghost imaging case. Here we will show that under certain stringent conditions, the resolution can be improved
by a factor of 2 compared to classical optics. In Sec. III we generalize the scheme to the |1, N} case and show that
resolution improvement by a factor of N can be obtained. In Sec. IV some discussions will be addressed on other
experimental conficurations. Finally we will draw our conclusions in Sec. V. In an appendix we dizcuzs the meaning
of the approximation that the N photons illuminate the same point on the object.

II. THREE-PHOTON OPTICS

‘We start with three photons because this is the easiest case to investigate the various configurations. Throughout
the paper we shall assume that the source of the three photons is a pure state and that the three-photon counting
rate for three point detectors iz give by

Re=g [ dn [ dia [ de31,2.9)P, M
0 0 0

where the three-photon amplitude is determined by matrix element between the vacuum state and the three-photon

state |}
¥(1,2,3) = (0| BV ESP ESD |w), @)

and
ED (7,25, 5) = fdw:['fzﬂj}?jfj(wj)ﬂ 1% g5 (65, wys i 2)a(85,w5), )

where E; = +/hw;/2¢y, &5 is the transverse wave vector, and a(d;,w;) is a photon annihilation operator at the output
surface of the source,

[a[:(i',w),a' (@fwh)] = d(a — aNd(w — wi). (4)

The function f;(w) is a narrow bandwidth filter function which is assumed to be peaked at ;. The function g; is
the Green's function [2, 7| that describes the propagation of each mode from the output surface of the source to the
gth detector at the transverse coordinate gj, at the distance from the output surface of the crystal to the plane of the
detector, z;. V¥ is referred to as the three-photon amplitude (or three-photon wavefunction).

‘We start with the case in which the source produces three-photon entangled states with a pair of degenerate photons,
that is 9 — 919

[1,2) =frﬂuldwgfd“guld“gug(f@wl Fws — )6(2a7 + (I2)(£T((}'2,M2)[{11(f_2’1‘wl)]2|0}, (5)

where (1 is a constant, wy o and &5 are the frequencies and transverse wave vectors of the degenerate and non-
degenerate photons, respectively. The d-functions indicate that the source is assumed to produce three-photon states
with perfect phase matching. We assume the paraxial approximation holds and that the temporal and transverse
behavior of the waves factor. The frequency correlation determines the three-photon temporal properties. The
transverse momentum correlation determines the spatial properties of entangled photons. It iz this wave-vector
correlation that we are going to concentrate on. As discussed in [23], several imaging schemes can be implemented
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FIG. 1: (color online) Schematic of quantum imaging with a three-photon entangled state |1,2). d; is the distance from the
output surface of the source to the object. L; is the distance from the object to o 2-photon detector, Dy, dz is the distance
from the output surface of the source to the imaging lens with focal length f and L. is the length from the imaging lens to
a single-photon detector [}z, which scans coming signal photons in its transverse plane. “C.C." represents the joint-detection
measurement.

with this three-photon source. To demonstrate spatial resolution enhancement beyond the Rayleigh diffraction limit,
consider the experimental setup shown in Fig. 1. It will be shown that for this confizuration the spatial resolving
power is improved by a factor of 2, provided the degenerate photons illuminate the same point on the object and are
detected by a two photon detector.

As depicted in Fig. 1, two degenerate photons with wavelength Ay are sent to a two-photon detector (Dq) after
illuminating an object, and the non-degenerate photon with wavelength As propagates to a single-photon detector
(Ds) after an imaging lens with focal length f. The three-photon amplitude (2) for detectors Dy and Ds, located at
(21, 1) and (22, p2), now is

¥ — Wy 5 = (01ESD (2, 22, t2) [V (51, 21, 01)) *h1.2), (6)

Following the treatments in [2, 7, 23|, we evaluate the Green’s functions g1 (61, ws; g1,21) and ga(da,wa; ga, 20) for
the experimental setup of Fig. 1 assuming that the narrow bandwidth filter allows us to make the assumption that
wj = Q5 + v; where || < Q; and 20Q; + Qo = Q.

In the paraxial approximation it is convenient to write

. = ijSszJ;‘c . P
9@, w3 B 73) = XG5 w53 Py 25); (M)
moLija
then
- 44152 i Ky 5 -Fe .
x1(d@1,; 61,21) = e ‘ %‘% fdlzﬂnA(ﬁo)ez ,hjrf‘ e’ i eﬁl'ﬁ", (8)
 dg]an|?  Eglm? vy y w r
Xa(@2,00; p, 22) = € i /d‘zm*’-! (Z3- )i %m)'piv C)]

where we replace w; by Q; in x;, K; = Q;/c=2w/Aj, 21 =dy + Ly, and 2o = da + Lo, respectively. In Eqgs. (8) and
(9), A(p,) is the aperture function of the object, and g, and F are two-dimensional vectors defined, respectively, on
the object and the imaging lens planes. With use of Eqs. (3) and (5), the three-photon amplitude (8) becomes

J0die e:’(29171+ﬂn'ra)(:[,1 o (10)
where 7; = t; — z;/c and
g = / dirydiad (2 + 1)) £ 4 1) fa(Qa + 1) By o (11)

where

. N AL YR R § S LAY 10 A L Kolzl® IRyt o
Bia = H(J‘/dzﬂo/‘(ﬁo)(?l L e = [dlﬂ‘o/l(ﬁ:;-)“‘ e m /d’zﬂlff: 5 (I'%__})ff_zrﬁ%m'm

o f dPoye 10 G RD) it (2 =0 ) (12)

where we collect all the slowly varying quantities into the constant By. To proceed the discussion, in the following we
will consider two different detection schemes. One uses a point two-photon detector for two degenerate photons after
the object and the other has a two-photon bucket detector.
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A. Point Two-Photon Detector Scheme
In this detection scheme, a point two-photon detector is necessary to retrieve the information of degenerate photons
scattered off the same point in the object. We therefore make the key assumption that the detector Iy is only sensitive
to the signals from the same point in the object, ie., 8{F, — 7,) [The validity of this assumption is addressed in the
Appendix|. With this assumption, Eq. (12) becomes
(K El®  3EL B R , Ka|Fl? -
B2 = By ffpoAg(PL)ea_HTLe R /dzﬂse!_’t{_(ﬁ Neizypri
” fffzme ila 2 (g + L) 2t (51— (13)
Completing the intepration on the transverse mode &'y in Eq. (13) gives

2 2 . 2. 7 Fao
Bi2 = By f 2 po A2(7,) TP L agmms iy =

2 - "
,(fdzm"‘“'f" (25 +arrrrmaa — Flg— i B+ mrps i) (14)

By imposing the Gaussian thin-lens imaging condition in Eq. (14)

1 1 1

G Lo * do + (A1/2A)dy’ (15)

the transverse part of the three-photon amplitude reduces to

S T L 2Hy By Fo TR o
Bys = Bn]dgp.,!lg(,&'n)c”ﬁml P +asmarngle 4 somb( i Po :i ), (16)

Azlda + (A1/2A2)d, ]

where R ia the radius of the imaging lens, R/[ds + (A1/2A2)d;] may be thought of as the numerical aperture of the
imaging system, and m = La/[ds + (A1/2A2)d1] i= the magnification factor. In Eq. (16) the Airy disk is determined,
as usual, by somb(z) = 2J,(z)/z, where Jy (z) is the first-order Bessel function.

Before proceeding with the discussion of resolution, let us look at the physics behind Fgs. (15) and (16). Equation
(15) defines the image plane where the ideal the point-to-peint mapping of the object plane occurs. The unique point-
to-point correlation between the object and the imaging planes is the result of the transverse wavenumber correlation
and the fact that we have assumed that the degenerate photons illuminate the same object point. Let us make a
comparison with the two-photon and three-photon geometrical optics [7, 11, 23]. In the Gauss thin lens equation
the distance between the imaging lens and the object planes, ds + (A1/2X5)d; is similar to the form that appears in
the non-degenerate two-photon case except for the factor of 2. This factor 2 comes from the degeneracy of the pair
of photons that illuminate the object. As we will show below, this factor of 2 is the source of the improved spatial
resolution. Equation (16) implies that a coherent and inverted image magnified by a factor of m is produced in the
plane of Dy, Of course, there really is no such image and the true image is nonlocal. The point-spread function in
Eq. (16) is generally determined by both wavelengths of the degenerate and non-degenerate photons.

To examine the resolution using the Rayleigh criterion, we consider an object consisting of two point scatters, one
located at the origin and the other at the point @ in the ohject plane,

A(fo)? = A30(fo) + AZ6 (5o — d). (17)
By substituting Eq. (17) into (16) we ohtain
) (19)

Py =5 “EF(;] W d-z(lz,\g;’/\l)) - (pll} Pﬂ "

indicates that the image is coherent. For a point 2-photon detector, we require 5 = 5} in Eq. (19). As is well-known
[2] for coherent imaging the Rayleigh eriterion is not the best choice for characterizing the resolution, however, it is

R
Az

nh
Ag

& g
Ly da + (A1/2M2)dy

o
Lg

By2 =By (Agsomb (

) 4 e‘i"”’Agt;omb {

where the phase
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indicative of the resolution that can be attained and it is convenient. For a circular aperture, the radius of the Airy
disk, £, is determined by the point-spread function, which is

AaLs

£=061"%

. (20)

Note that the radius of the Airy disk is proportional to the wavelengih of the non-degenerate photon. This is the
standard result as obtained in classical optics. Using the Rayleigh criterion, the image of the second term in Eq. (18)

is taken to lie on the edge of the Airy disk of the first term, therefore,

A A
am = 0.61 ?2 (d + idl). (21)

We see from Eq. (21) that the resolution depends on the wavelengths of the degenerate and the non-degenerate
photons. In the case that dy 33 da, so that do+ (A1/2A2)dy, is approximately (A1/2Az)dy. In this case Eq. (15) implies
that Ly & f and the radius of the Airy disk approaches to 1.22A, f/R, and

Mdh /2
g1 /2.

7 (22)

am = 0.

Equation (22) shows a gain in spatial resolution of a factor of 2 compared to classical optics. Furthermore, there is
no background term which is characteristic of the quantum case.

B. Bucket Detector Scheme

If the two-photon detector is replaced by a bucket detector and the two degenerate photons are collected by two
single-photon detection events, located at (Ly, 7)) and (L1, #}), in the bucket, Eq. (12) becomes

: Fal? : K17 -Fa A A Ty AL (Hg oo o
By, = Bn]{ﬂ?p,,fl(;}'“:]clx : 1 (f_lx Ly ]cﬁzp’oﬂ(;%)n‘mﬁfll et Ty f(lngfﬂah £ (L%—})(ia%m-m
« f dPaye 18 PERARD) g—iGr @p—po ), (23)

Under the assumption that the two degenerate photons are scattered off the same point in the object, Eq. (23)
takes the similar form as Eq. (13), except that the second phase term in the first integrand of (13) is replaced by
exp[ - ?ﬁwﬁ]. It is easy to show that the Gaussian thin-lens equation takes the same form as Eq. (15). By
performing the same analysis as done in Sec. IIA on the resolving two spatially close point scatters, the three-photon
amplitude (18) now is

_ a 2R ﬂz i 42 2rR f)f:; a
Bio=Bg (Ansomb( % |L, + e AZsomb % |L, f &1 Ouad | ) (24)

.

Since the bucket detector gives no position information, we must square the amplitude and integrating over the bucket
P2 i

detector,
S 25
7N YT WE D @)

i i
2 2 2 _ 2p 2 4 o[ 21R 2R
J = f{f ;Jl/-rf p‘”ﬁ'l‘g] = 53| Byl (IAU| somb (—
where 3, is the area of the bucket detector. It is easy to see that the spatial resolution improvement is the same as in

) + |;r-‘|a|“=-1(*)mb‘2 [—
Az

2}

Ls

Az

Sec. IIA, the difference is that now we get an incoherent image. The advantage is that a two photon bucket detector
should be easier to construct than a point two photon detector.

II1. N+ 1PHOTON OPTICS

In Sec. II, we have shown that with the entangled photon-number state |1, 2), the ability to resolve two point sources
in the object can be improved by a factor of 2 by sending two degenerate photons to the object while keeping the
non-degenerate photon and imaging lens in the laboratory. In this section, we are going to generalize the experimental
configuration (Fig. 1) with use of the entangled state of |1, N}, as described in Fig. 2. For simplicity, we first address the
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FIG. 2: (color online) Generalization of gquantum imaging with N + 1 entangled photons in state |1, N). For notations please
refer to Fig. 1 except that here D is an N-photon detector. The image is formed in the coincidence measurement and is not
localized at either detector.

case shown in Fig. 2 where the N degenerate photons traverse to the N-photon detector, Dy, after the object and the
non-degenerate photon propagates to the single-photon detector, Do, The assumption required for the enhancement
by a factor of N are that the N photons sent to the object scatter off the same point and are detected by the N-photon
detector, [}y.

The N + 1 photons are assumed to be in a non-normalized pure state

|1 =/dw1dw«2fdzalcf2u25(Nwl Fws — 3(Na 4 a.z)a};?(azi)}ﬂo;, (26)

Again the d-functions in Eq. (26) indicate perfect phase matching. The N + I-photon coincidence counting rate is
defined as
1 T T T
Ree Tf dhf {ﬂg---f £i5N+||§'1’N(1,2,---,N | 1)'2, (27)
[} 1] 1}
where Iy y is referred to as the N + 1-photon amplitude. That is
T (1,2, N+ 1) = OETVESD - B v
= (O1BS" (2, 22 t2) B (71, 20, )] 1, v). (28)

Following the procedure done for the |1,2) case, we calculate the transverse part of the NV + l-photon amplitude
lI’l,N (28) as

‘yl,N - ez(N(ll'!l+!2242)¢1’N(T1,TQ)B_I,N

Bun = Bo [ @a G S S L [ 2y G SRR [ g R G

N fold
8- (N~ flo =+ — )
(N3 2 4 d — —
x/d?rxle ' (T +7)e N . (29)
Here €1 x5 (1, 72) describes the temporal behavior of entangled three photons, By applying the same argument that

the N-photon detector 1y only receives the signals from the same spatial point in the object, Eq. (20) can be further
simplified as

(N Fa|? ; NEy ) Fo Kalm oy 1 ;Ko p
By = BO/d?poA”(,ao)e‘ 3L et b /de;e: S e DS L
N EEEP ds s oo
A o
Performing the integration on the transverse mode @7 in Eq. (30) gives
x.NRi‘Eil o

: 7s1®
Bin Jb’nfﬂrz-!f’ur‘lj\l(:ff:,r)*‘lzNK14 L1z, MG e

Kalm)? P
x [d2pze* A I g fra — e s LB s vy (31)
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where, again, we have assumed multimode generation in the process. Applying the Gaussian thin-lens imaging
condition

1 1 1

a = + 3
f Ly dad (M/NA2)dy

the transverse part of the N + 1-photon amplitude (31) between detectors Dy and D now becomes

 NEy76|? (g 1  NKF o 9 R| & 5
= By | £o.4Y(5.)e P ar T2t cry ey B EE T Bl 2T P2 Pe || 39
By w of oA (,)e TR &l i som N | L } %t O /N (33)

As expected, Fqa. (32) and (33) have the similar forms as Eqs. (15) and (16) for the |1, 2) case. The unique point-to-
point relationship between the object and the imaging planes is enforced by the Gaussian thin-lens equation (32). The
coherent and inverted image is demagnified by a factor of Lg /[ds + d1(A1/NAg)]. The spatial resolution is determined
by the width of the point-spread function in Eq. (33). Note that a factor of N appears in the distance between the
imaging lens and the object planes, dy + dy(A;/NAs). We emphasize again that the image is nonlocal and exists in
the coincidence events.

To study the spatial resolution, we again consider the object represented by Eq. (17). Plugging Eq. (17) into (33)

vields
2rR '
z J ) (34)

EBin=E (AuNsomb (—
£ )‘2

- —
o a

Ly " dy+ (0 /N,

P

Ly

2R
Az

) &N AQ’ somb [

For N single photon detectors located at ;:-'(11) RN p(lN) the phase is given by
N
e .
Nla 2 1 1 a. 1) 42) i
B I(1|: l | ( i ) (o1 "+ pi + ):| (35)
2 Ly dy+da(NAs/Aq) L,
i g A & detas svamiig Y S el s e i it i 4T
For a point N-photon number detector, we require gj * =g = and a coherent imaging is achievable in this case.

The first term on the right-hand side in Eq. (18) gives the radius of the Airy disk, which is the same as the |1, 2) case,
see Fq. (20). Applying the Rayleigh criterion, the minimum resolvable distance between two points in the transverse
plane now is

Y A
am = 0.61 1; (@ " N;;zl). (36)

For the case of N = 2, Eq. (36) reduces to Eq. (21). In the case that dy > d», this becomes

A1dy
NR’

iy = .61 (3?}
As expected, Eq. (37) shows a gain in sub-Rayleigh resolution by a factor of N with respect to what one would obtain
in classical optics. We therefore conclude that in the proposed imaging protocol, the spatial resolving power can be
improved by a factor of N with use of the entangled photon-number state |1, N'}). Furthermore, because we are using
an entangled state with a specific type of detector, the image has high contrast because of the lack of background
noise.

By following the analysis in Sec. IIB, we can show that by replacing the N-photon detector with an N-photon
bucket detector, we get an incoherent image but the sub-Rayleigh imaging process is not changed.

IV. DISCUSSIONS AND OTHER CONFIGURATIONS

In the previous two sections, we have analyzed a novel ghost imaging by sending N degenerate photons to the
object while keeping the non-degenerate photon and imaging lens in the lab. We find that if the distance between
the object plane and the output surface of the source is much greater than the distance between the imaging lens
and the single-photon detector planes, we can gain spatial resolution improvement in the object by a factor of N
compared to classical optics. In the cases that we have discussed in this paper, this enhancement beyond the Rayleigh
criterion is due to the quantum nature of the entangled photon-number state. The assumptions required for such an
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FIG. 3: (color online) Other schematics of quantum ghost imaging with three entangled photons in state |1,2). (a) Both the
imaging lens and the object are inserted in the non-degenerate photon channel. (b) The imaging lens is placed in the degenerate
photon pathway while the object is in the non-degenerate optical pathway.

enhancement are that the N degenerate photons sent to the object scatter off the same point and are detected by
either an N-photon number detector or a bucket detector. An N-photon bucket detector is much easier to realize
than an N-photon point detector. Such a bucket detector could be an array o! f single photon point detectors which
only sent a signal to the coincidence circuit if exactly N of them fired.

Besides the favorable configuration discussed above, one may wonder what happens if we switch the N degenerate
photons to detector I}y and the non-degenerate photon to [Ds after an imaging lens and an object? Do we gain
any spatial resolution improvement? To answer the questions, let us look at the |1,2} case as illustrated in Fig. 3(a).
Following the treatments in Sec. ITA, after some algebra we find that the transverse part of the three-photon amplitude

(6) is
Bl = Bnftigpnﬁ(;fo)cimfm(gg i ‘l’z)c it
. /dapmsxnlfu'“f[.;,; Vg i ey - }Je K[54 -i-.ii(kf}ﬂ'%zlhl_ )
In the derivation of Eq. (38), the Green’s functions associated with each beam give
—‘iﬂ’zl;éfﬁe_iﬂjl i
KylFe

. . dglag)2 _,_( £ ) §Hapare jHalzl? (1 ) xﬂ; (i, — 2P
X‘&(ﬂzjﬂ%m;%) = e /ﬂ! poA(fs)e " —,-— [’f PEP i a2

x1(@1,Q1501, L1) = e

Applying the Gaussian thin-lens imaging condition
1 1 1

+i -, 39
A W R A i
the transverse spatial part of the three-photon amplitude (38) reduces to
ifalpell (i by _ Koms o 2 R| . b
Bis =By | dpeAlfs)e 2 e somb g : 40
o "f Gadige Ve B somb (L T (40)

From this we see that the magnification is m = [d2 + (A1/2A3) L] /ds. Comparing Eqs. (39) and (40) with Egs. (15)
and (16), we see that the distances between the object and the thin lens and between the thin lens and the imaging
plane are interchanged. Since the degenerate photons are measured at the imaging plane in the setup of Fig. 3(a),
the requirement of a point N-photon detector cannot be relaxed.

Computing the spatial resolution as in Sec. II we have
gk ) t %' Azsomb (27”!{ . L )] ! (41)

51 }
da + (A1/2A2) Ly

By =By [Anbomb(
, i

2 e
where ¢’ = K| |d2| (( ,}1 | dl,;) e |. The radius of the Airy disk is

Xo (A
£= nm;(% L]-{-dz) (42)
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L) > ds, &~ D'S:;’l ()‘21 ), so that the width of the point-spread function shrinks to one half its value compared to
the classical cases. Applying the Rayleigh criterion to see the minimum resolvable distance between two point sources
in the object. From the second term of Eq. (41) the minimum distance turns out to be

dyAe

Dmin =0.61 R N

(43)

which only is a function of the wavelength of the non-degenerate photon; therefore, no spatial resolution improvement
can be achieved compared to classical optics.

Finally, we consider the configuration shown in Fig. 3(b) which was analyzed in [23] where it was shown that no
well-defined images could be obtained.

It is straightforward to generalize the above two configurations with use of the |1, N} state. By replacing the source
state by the state |1, N} in Fig. 3(a), it can be shown that the radius of the Airy disk becomes

£=1061 ’}; (;;2 L1+ JQ). (44)

If Ly > da, £ — M(%}), so the Airy disk shrinks to one Nth of its radius compared to classical optics. However,
if Ly < ds, Eq. (41}11) gives the same result as in classical optics. Replacing the source with photon state |1, N} in
Fig. 3(b), the above conclusion iz still valid. The analysis has been prezented in [24] and we will not repeat here.

V. CONCLUSIONS

In summary, we have proposed a quantum-imaging scheme to improve the spatial resolution in the ohject beyond
the Rayleigh diffraction limit by using an entangled photon-number state |1, N). We have shown that by sending
the N degenerate photons to the object, keeping the non-degenerate photon and imaging lens in the lab, and using
a resolving N-photon detector or a bucket detector, a factor of N can be achieved in spatial resolution enhancement
using the Rayleigh criterion. The image is nonlocal and the quantum nature of the state leads to the sub-Rayleigh
imaging resolution with high contrast. We have also shown that by sending the N degenerate photons freely to a
point N-photon detector while propagating the non-degenerate photon through the imaging lens and the object, the
Airy disk in the imaging can be shrunk by a factor of N under certain conditions. However, it may be possible to
show that a similar effect can occur using non-entangled sources. In t! he language of quantum information, the
non-degenerate photon may be thought of as an ancilla onto which the information about the object is transferred
for measurement. Our imaging protocol may be of importance in many applications such as imaging, sensors, and
telescopy.
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Appendix A: Validity of the Assumption Made in Eq. (13)

In going from Eq. (12) to Eq. (13), we have made an assumption that requires the detector Iy is only sensitive to
the scattered photons from the same spatial point in the object. This allowed us to collapse the N integrations over
the object into a single integral. In this Appendix, we give an example of how this assumption may be satisfied for
multi-photon scattering off the target. Our example assumes that each point of the object transmits or scatters the
light with a random phase which satisfies Gaussian statistics. The result is that the visibility decreases.

We start with the case of 2 4 1 photons. From Eq. (12) the integration over the iransverse vector ap, which gives

. Kyl7al?f a 1 iR P L, A 3 1
Byo Bn‘/-dﬂput‘l(p:,)ez L+ v rns e_“_"-"l_ez‘“"f""")‘/-t:i"zpf.‘,Al:,o:,)e"3 o b T T Ty yan )

Ky F p‘; . X Zo N AL F 2 ZotF
xe " : ;‘f E""‘é(ﬁ{‘)etf‘wl ﬁlﬁiz.-’p)'ul)‘!“] /d“!pse! Kal;;l lr'iz l 'Iz-i(lllf’—‘*z)"ﬁ' '}Je IK";"""IE?: ton lgf"‘:;gz”l], (Al)
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where 71 ; is a point at which a photon is detected on the bucket detector, each point of the amplitude has a random
phase associated with its transmission amplitude and, as usual, all the slowly varying terms have been grouped into
By. Using the the Gaussian thin-lens imaging condition (15) gives

K]'PG k'u’“ P K”pﬂ

1?2 1
25 +arms s

2
[+ mrmg s e

B = H(J]d po.fl(po)(

we ‘ﬂ;‘"— (7)o Tﬁmmmh(@& 5—“‘4_‘6;_
Az |Lg  2da+ (AafA2)d)

Al )] d?pt A(7L)e!

). (A2)

Generalizing to the case of N + 1, using the Gaussian thin-lens equation (32)

Ky e l? i K171 P g - i’ﬁlr",ng PRt AL
Bux = Bo [ onad(i)e” e I 0 [ g, a5, e T T
. el 2 R| fo 7
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1\2 1'12 (J{g |* (AlfNAg){zl ( )

where g}, = T i—1 Po,j-

To compute the counting rate we first calculate the magnitude square of the amplitude averaged over the random
phases. Starting with the N = 2 case and assuming that the ensemble average, (.-}, over those phases satisfies
Gaussian statistics so that

(! #PI+ 4P~ 00NNy = 6(5, — pLNG (B, — FL') + 8(Bs — ALNE(, — L), (Ad)
we find
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When we integrate over the bucket detector, the first term will be a constant while the second term will give us a
delta function in g, times the area of the bucket detector, s;. Equation (A5) reduces to

27R| g2
Az

Po

: LiM
2 2 2y 2 2
/ffﬂl,lflfﬂm(ml,ﬂ ) =C+|Bol?s ( )[rf ol A(F,)|*somb ( Ta £2 4+ LT ODh

) o

First note that for the second term is similar to Eq. (25), the difference being the term in parenthesis which is the
ratio of effect of diffraction to the area of the bucket detector, it is essentially the inverse of the Fresnel number.
Computing the constant C', is generally difficult and depends in detail on the geometry of the object, we can obtain
an upper bound on C quite easily,

C] < s2|Byf? / &, | A, (A7)

consequently, the visibility will be much less than for the ideal case discussed above. From Eq. (A6) the second term
is proportional to L1A1 which implies that as this product increases the visibility increases, however, recall for the
case of senzors [y ~ dy, so as this term increases the minimum resolvable distance also increases. The generalization
to the case of N + 1 photons is straightforward. The ensemble phase average now becomes

<me[i(£j¢(m) i}é(@))b S ] 86 - o). (a5)

=1 =1 Py r=1

where the N degenerate transmitted or reflected photons acquire random phases (g, ;) and Py is the set of permu-
tations of the numbers (1,---,N). In Eq. (A8) there are N! terms. We can show that

(B = 1Bol [ o ] Fopo N AGog) -+ Al ) Pomb® ( Z 2 - )
] o, o, o, a, L'g Nld‘z ( “{N‘xz) :

XZE '”Ta il lﬁn(ﬁw o, Py (n)) (A9)
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When we integrate over the bucket detector, we get a complicated result. Two terms are simple, the identity per-
mutation gives a constant and the single cycle subgroup give an incoherent image with a resolution that depends on
A1/N. These are the only terms for N = 2. The remaining terms will lead to terms which are essentially constant.
For N = 3 we get

LA
[ o [ @na [ EpsiBiah) C+3|Bn|ﬁs§( AL

2may

) [ #os [ E61AG: —205P1AG: + O

27 R P2 Py 2 3 Ly 4 2 = 46
xmmb(—}\ I 3—[@ WINEA ) + | Bo|"s;, —QTrs;:, fd Po.1|A{Fa1)|
2w R | g Po.l )
xsomhb? f : g Al10
( As | Lo do+ (Ay/NAa)dy (A10)

From Eq. (A10) the second term shows explicitly how the general terms will lead to a complicated average over the
illuminated area of the object. This result shows that the image will have very poor visibility for large N, it is not
certain whether there might be arrangement of detectors for the N photons which will give better results.
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Appendix D Three-Photon Entangled Beams

In recent work on entangled three photon states it was shown that a protocol exists for improving
resolution. The use of the protocol for sensors with large intrinsic loss is difficult because the loss entails
unredlistically long counting times. To overcome this limitation it has been proposed to replace the
photons that are subject to the loss by intense beams. In this paper we initiate an analysis of the protocol
using beams. The model presented is chosen to make analytic calculations possible while retaining the
basic physics of the protocol. As a first step, we examine the model to determine the temporal or
longitudinal correlations. It is shown that in addition to the three-beam entangled state thereis aterm in
which two entangled beams occur and a third term with no entanglement. The counting rate of each of
these terms is estimated. We estimate that under ideal conditions for the model considered here, we can
only get about 5x10%/s-cm?,

We consider a simple model illustrated in Fig. 58. A coherent pair of squeezed states is
incident on a crystal. We assume that the crystal is cut so an idler pair, one from each

beam can be up converted. To
do this, it is necessary that the
idler beams not be degenerate,
this might be done by
frequency shifting one of the
idler beams S0 that
0,=0,+Ao, o,=o0,6 and
o, =0, +o, or, aternatively,
by rotating its polarization.
This avoids the
complication of an upconverted
photon being produced by a
pair of idlers from the same

beam. The up-conversion
Figure 58 Correlated beams of signals, s, and idlers, i, | coupling isassumed to be weak
are produced by down-conversion. Theidlers from enough so that we can apply
the lower beam are frequency shifted. Thecrystal XU | first order perturbation theory
is chosen so there is phase matching that allows an to compute the generation of

idler from each beam to be up-converted to aphoton. | the up-converted photons. The

remaining idler beams are not
detected and we measure the correlation function

GO =(¥|: 11,1, :| W), (92)

where 1, is the few cycle average of the photon flux of the up-converted beam for j=u

and of the two signal beams, j=a, and b. The colons denote normal and time ordering,
and |¥)is the state of the system at the surface z=L,. The Hamiltonian for the up-

conversion in the interaction picture and the rotating wave approximation is
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S(x)=e**sinc(x / 2) (93)
Aklz = ku - kil - ki2

where a, and a are the annihilation and creation operators for the signal modes incident
of the up-conversion crystal, the b, and b/ are the corresponding idler operators, and hc

means Hermitian conjugate. In addition, we assume that the beams are collinear and
parallel to the z-axis. Note that the coupling constant y, has the dimensions of frequency.

Using perturbation theory in powersof y,, |¥) = §|‘P‘”)> , and thefirst order term
n=0
is
P = %}dtHu(t)|\P(°)> (94)
INo

where the state incident on the up-conversion crystal is

[#O)=T1U,J0) U, =e ™, (95)

|0) isthe vacuum state. We have assumed perfect phase matching for each pair of modes
in the squeezed states 0 o, + w; = w, . Then taking the idler fields incident on the up-
conversion crystal to be

(Vm)efi(watfk(,z)bar a= |11 i2 (96)

a

EV(zt)=Xe,f

where e, is defined in Eq. (113), f (v, ) represents a filter centered on (2, with
v, =0, —-Q_ and

v.|= Q,, wefind

3
(W)= (i T snhty) X5, L S(AK,L,) (v fL(v,)ITU & alal, |0)
]

WuWi1Wi2 Dym » @j1, Dj 2

(97)

v, =m, —Q, j=um,ili2

where we have assumed that T, , the up-conversion interaction time, is sufficiently large

that the time integral can be approximated by a delta function, and the w’s are the group
velocities of the beams defined in detail below in Eq. (104). In addition, we have used

U;'b,U, = coshy b, +sinhy a;
(98)
o, =04+ o, kp = ksj + kij'

Using these results, the leading order in the correlation function may be written as
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where the free space fields for the signal beams and the up-converted photon are

ar “a

E;’=Xe,f,(v,)e""a,
r

(100)

a =a,b,u. It will be shown that the correlation function may be written as

1. :
6 = (| m)eo'y + (1] 1) 252 + (] . )sinn' 7

s

(ye Y .
r= (280C)3L—WTU J e’e’e’dnh’ y
2

W W

u it

(101)

where the three orthogonal states ‘ ;(J.> correspond to distinct processes illustrated in

u \13>

Figure 59 The plus sign on the i, photon line is a
frequency shifter. For |z,) we only show one

diagram, there is a diagram where s is detected at b and
two more diagrams with s; detected rather than s,.

the three-photon entangled state.
To evaluate E{’E{”E!”|¥®) we need to compute
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Figure. 59. In the state |Zl>

the signal photons detected at
a and b are the twins of the
idlers that created the up-
converted photon u. This state
corresponds to an entangled
three-photon state and
dominates in the limit of small

y. The state | »,) corresponds

to four cases in which only
one of the signals detected at a
or b is a twin of one of the
idlers that generated u. This
state is a product state of a
single signal photon and a
two-photon entangled state.
Finally, in|y,) neither signal
detected at a or b is a twin of
one of the idlers that generates
u. This state is separable.
The last two states decrease
the visibility associated with



a,a,a, ]__[Ujajmajlaj2 |0)= HU Cunum (aar coshy +b] s nh’r)(abt coshy + b/ sinh ;/)x
] ]
aj,a;,|0)

=TV 6umun [coshzy (5ar515bt52 +ar <> bt)O) +coshysinhy x
j

{6, cblal, +ar > bt)+ 1> 2}0)+sinh? yb b alial, | 0) .
(102)

The three classes of states can be read off from this equation. In evaluating the delta
function in Eq. (102) some care must be taken to note that

Oy — Wiy — Wi = (Qu _Qil_Qi2)+ Vim T Va T Ve2

(103)
= Vum + VSl+ VSZ
using frequency phase matching for both the down-conversion and up-conversion.
Similarly
Ak, = (K, — K — K)oy Yo Yo gy
W” Wil Wi2
=m g Yy Ty (104)
W“ Wil Wi2
1 dk
W- da)I ( Ij)

where we again use perfect phase matching and wi; is the group velocity of theidler ij in
the up-conversion crystal and similarly w, isthe group velocity evaluated at €2, of the up-
converted photon.

Using Egations (101), (102), and (104), it is not difficult to show that

2)= % 6, . f (e e (S(AK L) £ (v) £ (1 )e o) 11 > £)0) (105)

Vs Vr sVt

where ¢ =Q, 7, + Q. (7, + 7,) , and we have assumed that f,(v)= f,(-v)= f,(v)and
similarly for i2 and b.

L
Converting the sums to integrals )| —>?Q_[dva, and using v, =v,+v, and
v=(v,+Vv,)/2,wefind

L)’ e’ v v :
Zl Zl = [_Qj dee"er fu(Vm) dV faz(__m+ V)fz(——m_ V)e*"’fab X
(nlz)=\2) '] Jav[ 22D 2060

S(Ax,(v,,v)L,)+v—> —v]2
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Dil,i2 = (106b)
W.

Ak, (v,,v)=Dv, + D2V

1 (1
D ZE(Dum,il—‘r Dum,iz) :LW___(_—'—_)) (106C)

(1 1)

Dil,i2 = LW—.l - W_IZJ

z-a\b = z.a - z.b

106d
r’:%(rua+rub)=z'u—%(Ta—i-rb). ( )

This complicated expression can be understood by noting that 7’ is the difference
between the time the up-converted photon and the “center of mass’ of the two signal
photonsareat z= L, while 7y, is the difference in time when the two signal photons are
a z=1L,. DiyiL, is the difference in time to cross the up-converting crystal for idler

wave packets with central frequencies (2; and (2
In order to get a feeling Eq. (106a), assume that the filters are Gaussians,

f (v)=e 2. We also assume that the function S(Ax, (v, ,v)L,)is much narrower than
any of the filters, then the inner product vanishesunless | 7' |<| D | L,

167¢ (L))" -twre? 27 27
SAVAL m[—Q] e T {H(l_IDIL)_H(_l_IDlL)}
u u (107)
D
T=rT +(4+r)T2  r= | ISIT |

where H(X) is the Heaviside step function, and we havetaken T, =T, .
The contribution to G of the entangled term has a magnitude that is given by

2
(3 4\/— 21 hQil TaTn cosh?
- v
( o1 ) A|D||-u 77T, (108)

where N, is the average flux of u-photons detected and is defined in Equation (115)
along with Ty. The parameter T is the product of the intensities detected at a and b times
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the efficiency of producing the up-converted photons. The term following I in Equation
(108) is the energy of a single photon idler photon divided by the area of the idler beam
and the difference in time it takes the idlers to cross the up-converting crystal. The next
term is of order unity.

Using Eg. (102) and referring to Figure 59, we find that

|2.)=2 2 S A O Cad IR A CA L R LA B

S(Aklz) +a<b ]a*b* } (109)
where the creation operator b generates an idler which is the twin of a signa photon of
frequency Q.+ v, that is undetected, and the photon detected at a is a signal photon of
frequency Q. + v,,. The second term in the square bracket is obtained by interchanging

the indices a and b since the signal photons are degenerate. The remaining two terms
come from the interchange of which twin of the idlers is detected. These last two terms
are identical to the first two as can be seen by redefining the summation indices. It is

clear that | z,) and | z,) are orthogonal.
Following the method used get Eq. (106)

(221 22) = Z(Zf (v)JZf.l(v.l)IZf(v)f (V= V) X

Vi1

S(Ax,L,)e” Wntia 4 g ¢> b § (110)
Ak, =D,V + Do

This term factors into the first term in brackets which corresponds to detecting
independent signal photons. In the second term there is an interference term arising from
the identity of the detected signal photons.

Making the same assumptions to evaluate the integrals, we get

427 [ LQY 27 27
et (L)Y, o2n, o2, ] 111
<ZZ|ZZ> T |Du|1|Li C (lDu,illLu) (lDu,illLU) ( )

where

AKX 1 O<x<l1
X) = )
0 otherwise

The appearance of zy=17 -7, isindicative of the fact that the signal detected at a and
up-converted photon are partially entangled because o, + o, =20, - o, . Therefore,

once the signal frequency o, is determined, the other two photons are entangled in

frequency. Also since we use the up-converted photon as a trigger, 7., is positive. The
second term in Equation (111) corresponds to the interchange of a and b. Consequently,
there is interference between the case in which the entangled pair is detected at (a,u) and
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the other signal is detected at b and when the pair is measured at (b,u) and the other
signal isat a.
Finally, following the same path, we find that

VAPAE [ ](fd a(Vr))(fdvtsz(vl))]'dvmjdvx

LT LT oL 0)SAIF (112)

_ 27 (LQY
- TazTi | Du,il | I—u c

where Ak, isdefined in Eq. (106). This term factors into three terms corresponding to
the separate detection of two signal beams that are uncorrelated with the up-conversion
beam and up-converted photon.

The magnitude of the ratio of the second and first term in Eq. (100) using Equations

(111) and (107) is approximately i D
T

—tanh*y . Using some typical numbers

u,i

[Timothy E. Keller, Doctoral Thesis, UMBC (1998)], thisis a factor of order 5 tanh?y so
that the contribution of the two termsis comparable when y20.5. The ratio of the third
= 2IDFL, tanh®y =~ 0.5tanh*y . The small
T.|D,; |
value of thisterm is mainly due to thefact that |D | L, =107
Finaly, we estimate the number of coincidence counts from Equation (108). Using a
conversion efficiency for the up-conversion of the order 1, /1, =10, and assuming that

la=1i=10 W/cm? we expect that the counting rate for the up-conversion will be about
5x10%s-cm?. If we assume ideal conditions we can expect this to be an upper bound to
the coincidence rate. This implies for the model discussed in this paper that once loss is
included that the counting rate will be too low for practical sensor application. Current
experiments are underway in which the rate of the up-conversion is much larger than
envisioned here. In this case the single photon model of the up-conversion breaks down
and an intense beam is produced. This case requires a different detection scheme.

term and the first term is approximately
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Appendix E

We define various quantities here in detail. The units of electric field are

€y = Ny | P2 (113)
&,AL, &,AL,

where V, = AL, is the quantization volume, ¢, = &,nZ is the dielectric constant, and the

a

index of refraction n, is evaluated a Q,. The up-conversion coupling has the
dimensions of frequency and is given by

hQ Q.0
=2/2(Q:Q.,.Q u ke P 114
7= 270 (i '2)\/25UVQ\/4n.21n32|_g v (114)

where 2(Q,;Q,,,Q;,)is the electric susceptibility in MKS units and so has the

dimensions of inverse electric field, and A is the cross-section area of the up-converted
beam.
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Appendix F

We compute the average flux of the up-converted photons detected

:—Zl f (V )l <\P(1) um um \Ij(+)>
¢ pc* Y (115)
= - sinh* yT? f 25 S(AK.L V2§ f
V LWU W, W, J Ve um%zl u(Vm)l Oum B+ @i ( 12 u) |1(V|l) I2( 2)
Going to the continuum gives
2 202
LST
Nu C [ yu J th47 Q'u Idvm | fu(Vm)lz'[dl/S(Aklz u) %
V Wu |1 (116)
|f|1(__+ V)f|2( - V)|

where we have made the change of variables v=v, —v,

,and v, =— (V +Vi,) DV,

Now assuming that the sinc function is much narrower than the idler, using Equation
(106¢) we replace the sinc function by

2r Disi
S(Ak,L, ) — D—é(vm - ﬁ V)

u (117)
r—= Dil,i2 (D D )
- D umll um,i2
gives
cf pc® VT2 272 ., (r )(r jz
N, =— u© sinh dv|f,(rv)f | (=+Dv]|f, | (=-1
u VQ WuWi1Wi2 C2 |D|Lu yJ. Vl u( V) i1 (2 )V i2 (2 )V |

L2 2
_o 92 c( 7. j T sinh®y
Vo \W,W,,W;, c* T, ID|L,

Ty = T2+ (2412 2T?

(118)

where we have taken the filters for the idlers to be identical f.(v)=e""'2. Finaly,
taking the group velocities to be equal to the phase velocities, using

en, ey Lo 7

I_il =— hQil
0 c T
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and similarly for i2, we have

u-—u-u

z .1
‘ \E gh " nilni2|D|c3\/2TU2+3Ti2LLqJ

Similarly intensity of the signal photons at each detector is given by

_ hQ L hQ. V7 .
| =c—2J7r—8nh?y = —=2 " gnh?
SREVA ‘/—cTa TETA T 4

a

722 _ QLT? fc_Ti\Z

(119)

(120)

which may be interpreted as the energy per unit area times the bandwidth times the

amplification factor of the down-conversion.
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